Skip to content

C-Mod Built-in Methods

Built-in Methods For CMod¤

Module for retrieving and calculating data for CMOD physics methods.

CmodPhysicsMethods ¤

This class provides methods to retrieve and calculate physics-related data for CMOD.

Source code in disruption_py/machine/cmod/physics.py
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
class CmodPhysicsMethods:
    """
    This class provides methods to retrieve and calculate physics-related data
    for CMOD.
    """

    @staticmethod
    @cache_method
    def _get_active_wire_segments(params: PhysicsMethodParams):
        """
        Retrieve active wire segments from the MDSplus tree.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection and shot info.

        Returns
        -------
        list of tuple
            A list of tuples, where each tuple contains the node path of the
            active segment and its start time. The list is sorted by start time.
        """
        params.mds_conn.open_tree(tree_name="pcs")
        root_nid = params.mds_conn.get("GetDefaultNid()")
        children_nids = params.mds_conn.get(
            'getnci(getnci($, "CHILDREN_NIDS"), "NID_NUMBER")', arguments=root_nid
        )
        children_paths = params.mds_conn.get(
            'getnci($, "FULLPATH")', arguments=children_nids
        )

        # Collect active segments and their information
        active_segments = []
        for node_path in children_paths:
            node_path = node_path.strip()
            if node_path.split(".")[-1].startswith("SEG_"):
                is_on = params.mds_conn.get_data(
                    'getnci($, "STATE")', arguments=node_path + ":SEG_NUM"
                )
                # 0 represents node being on, 1 represents node being off
                if is_on != 0:
                    continue
                active_segments.append(
                    (
                        node_path,
                        params.mds_conn.get_data(
                            node_path + ":start_time", tree_name="pcs"
                        ),
                    )
                )

        active_segments.sort(key=lambda n: n[1])
        return active_segments

    @staticmethod
    @physics_method(columns=["time_until_disrupt"], tokamak=Tokamak.CMOD)
    def get_time_until_disrupt(params: PhysicsMethodParams):
        """
        Calculate the time until disruption.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the disruption information and times.

        Returns
        -------
        dict
            A dictionary with a single key "time_until_disrupt" containing a list
            of time until disruption.
        """
        time_until_disrupt = [np.nan]
        if params.disrupted:
            time_until_disrupt = params.disruption_time - params.times
        return {"time_until_disrupt": time_until_disrupt}

    @staticmethod
    def _get_ip_parameters(times, ip, magtime, ip_prog, pcstime):
        """
        Calculates actual and programmed current as well as their derivatives
        and difference.

        The time derivatives are useful for discriminating between rampup, flattop,
        and rampdown.

        Parameters
        ----------
        times : array_like
            Time array for the shot.
        ip : array_like
            Actual plasma current.
        magtime : array_like
            Time array for the plasma current.
        ip_prog : array_like
            Programmed plasma current.
        pcstime : array_like
            Time array for the programmed plasma current.

        Returns
        -------
        ip : array_like
            Actual plasma current.
        dip_dt : array_like
            Time derivative of the actual plasma current.
        dip_smoothed : array_like
            Smoothed time derivative of the actual plasma current.
        ip_prog : array_like
            Programmed plasma current.
        dipprog_dt : array_like
            Time derivative of the programmed plasma current.
        ip_error : array_like
            Difference between the actual and programmed plasma current.

        Original Authors
        ----------------
        - Alex Tinguely
        - Robert Granetz
        - Ryan Sweeney

        Sources
        -------
        - matlab/cmod_matlab/matlab-core/get_Ip_parameters.m
        - matlab/cmod_matlab/matlab-core/get_Ip_parameters.m
        """
        dip = np.gradient(ip, magtime)
        dip_smoothed = smooth(dip, 11)  # ,ends_type=0)
        dipprog_dt = np.gradient(ip_prog, pcstime)
        ip_prog = interp1(
            pcstime, ip_prog, times, bounds_error=False, fill_value=ip_prog[-1]
        )
        dipprog_dt = interp1(pcstime, dipprog_dt, times, bounds_error=False)
        ip = interp1(magtime, ip, times)
        dip = interp1(magtime, dip, times)
        dip_smoothed = interp1(magtime, dip_smoothed, times)

        ip_error = (np.abs(ip) - np.abs(ip_prog)) * np.sign(ip)
        # import pdb; pdb.set_trace()
        output = {
            "ip": ip,
            "dip_dt": dip,
            "dip_smoothed": dip_smoothed,
            "ip_prog": ip_prog,
            "dipprog_dt": dipprog_dt,
            "ip_error": ip_error,
        }
        return output

    @staticmethod
    @physics_method(
        columns=["ip", "dip_dt", "dip_smoothed", "ip_prog", "dipprog_dt", "ip_error"],
        tokamak=Tokamak.CMOD,
    )
    def get_ip_parameters(params: PhysicsMethodParams):
        """
        Retrieve and interpolate Ip parameters.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing the interpolated Ip parameters, including
            "ip", "dip_dt", "dip_smoothed", "ip_prog", "dipprog_dt", and "ip_error".
        """
        # Automatically generated
        active_segments = CmodPhysicsMethods._get_active_wire_segments(params=params)

        # Default PCS timebase is 1 KHZ
        pcstime = np.array(np.arange(-4, 12.383, 0.001))
        ip_prog = np.full(pcstime.shape, np.nan)

        # For each active segment:
        # 1.) Find the wire for IP control and check if it has non-zero PID gains
        # 2.) IF it does, interpolate IP programming onto the PCS timebase
        # 3.) Clip to the start and stop times of PCS timebase
        for node_path, start in active_segments:
            # Ip wire can be one of 16 but is normally no. 16
            for wire_index in range(16, 0, -1):
                wire_node_name = params.mds_conn.get_data(
                    node_path + f":P_{wire_index :02d}:name", tree_name="pcs"
                )
                if wire_node_name == "IP":
                    try:
                        pid_gains = params.mds_conn.get_data(
                            node_path + f":P_{wire_index :02d}:pid_gains",
                            tree_name="pcs",
                        )
                        if np.any(pid_gains):
                            signal, sigtime = params.mds_conn.get_data_with_dims(
                                node_path + f":P_{wire_index :02d}", tree_name="pcs"
                            )
                            ip_prog_temp = interp1(
                                sigtime,
                                signal,
                                pcstime,
                                bounds_error=False,
                                fill_value=signal[-1],
                            )
                            end = pcstime[
                                np.argmin(np.abs(pcstime - sigtime[-1]) + 0.0001)
                            ]
                            segment_indices = np.where(
                                (pcstime >= start) & (pcstime <= end)
                            )
                            ip_prog[segment_indices] = ip_prog_temp[segment_indices]
                    except mdsExceptions.MdsException:
                        params.logger.warning(
                            "[Shot %s]: Error getting PID gains for wire %s",
                            params.shot_id,
                            wire_index,
                        )
                        params.logger.debug(
                            "[Shot %s]: %s", params.shot_id, traceback.format_exc()
                        )
                    break  # Break out of wire_index loop
        ip, magtime = params.mds_conn.get_data_with_dims(
            r"\ip", tree_name="magnetics", astype="float64"
        )
        output = CmodPhysicsMethods._get_ip_parameters(
            params.times, ip, magtime, ip_prog, pcstime
        )
        return output

    @staticmethod
    def _get_z_parameters(times, z_prog, pcstime, z_error_without_ip, ip, dpcstime):
        """
        Get values of Z_error, Z_prog, and derived signals from plasma control
        system (PCS).

        Z_prog is the programmed vertical position of the plasma current centroid,
        and Z_error is the difference between the actual position and that requested
        (Z_error = Z_cur - Z_prog). Thus, the actual (estimated) position, Z_cur,
        can be calculated. And the vertical velocity, v_z, can be taken from the
        time derivative, and the product z_times_v_z ( = Z_cur * v_z) is also calculated.

        Parameters
        ----------
        times : array_like
            Time array for the shot.
        z_prog : array_like
            Programmed vertical position of the plasma current centroid.
        pcstime : array_like
            Time array for the programmed vertical position of the plasma current
            centroid.
        z_error_without_ip : array_like
            Difference between the actual and programmed vertical position of the
            plasma current centroid.
        ip : array_like
            Actual plasma current.
        dpcstime : array_like
            Time array for the actual plasma current.

        Returns
        -------
        z_error : array_like
            Difference between the actual and programmed vertical position of the
            plasma current centroid.
        z_prog : array_like
            Programmed vertical position of the plasma current centroid.
        z_cur : array_like
            Actual (estimated) vertical position of the plasma current centroid.
        v_z : array_like
            Vertical velocity.
        z_times_v_z : array_like
            Product of the vertical position and vertical velocity.

        Original Authors
        ----------------
        - Alex Tinguely
        - Robert Granetz

        Sources
        -------
        - matlab/cmod_matlab/matlab-core/get_Z_parameters.m
        - matlab/cmod_matlab/matlab-core/get_Z_parameters.m

        """
        divsafe_ip = np.where(ip != 0, ip, np.nan)
        z_error = -1 * z_error_without_ip / divsafe_ip  # [m]
        z_prog_dpcs = interp1(pcstime, z_prog, dpcstime)
        z_cur = z_prog_dpcs + z_error  # [m]
        v_z = np.gradient(z_cur, dpcstime)  # m/s
        z_times_v_z = z_cur * v_z  # m^2/s
        z_prog = interp1(pcstime, z_prog, times, "linear", False, z_prog[-1])
        z_error = interp1(dpcstime, z_error, times, "linear", False, z_error[-1])
        z_cur = interp1(dpcstime, z_cur, times, "linear", False, z_cur[-1])
        v_z = interp1(dpcstime, v_z, times, "linear", False, v_z[-1])
        z_times_v_z = interp1(
            dpcstime, z_times_v_z, times, "linear", False, z_times_v_z[-1]
        )
        output = {
            "z_error": z_error,
            "z_prog": z_prog,
            "zcur": z_cur,
            "v_z": v_z,
            "z_times_v_z": z_times_v_z,
        }
        return output

    @staticmethod
    @physics_method(
        columns=["z_error", "z_prog", "zcur", "v_z", "z_times_v_z"],
        tokamak=Tokamak.CMOD,
    )
    def get_z_parameters(params: PhysicsMethodParams):
        """
        Retrieve and interpolate plasma's vertical position parameters.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing the vertical position parameters, including "z_error", "z_prog",
            "zcur", "v_z", and "z_times_v_z".
        """
        pcstime = np.array(np.arange(-4, 12.383, 0.001))
        z_prog = np.empty(pcstime.shape)
        z_prog.fill(np.nan)
        z_prog_temp = z_prog.copy()
        z_wire_index = -1
        active_wire_segments = CmodPhysicsMethods._get_active_wire_segments(
            params=params
        )

        for node_path, start in active_wire_segments:
            for wire_index in range(1, 17):
                wire_node_name = params.mds_conn.get_data(
                    node_path + f":P_{wire_index :02d}:name", tree_name="pcs"
                )
                if wire_node_name == "ZCUR":
                    try:
                        pid_gains = params.mds_conn.get_data(
                            node_path + f":P_{wire_index :02d}:pid_gains",
                            tree_name="pcs",
                        )
                        if np.any(pid_gains):
                            signal, sigtime = params.mds_conn.get_data_with_dims(
                                node_path + f":P_{wire_index :02d}", tree_name="pcs"
                            )
                            end = sigtime[
                                np.argmin(np.abs(sigtime - pcstime[-1]) + 0.0001)
                            ]
                            z_prog_temp = interp1(
                                sigtime,
                                signal,
                                pcstime,
                                "linear",
                                False,
                                fill_value=signal[-1],
                            )
                            z_wire_index = wire_index
                            segment_indices = [
                                np.where((pcstime >= start) & (pcstime <= end))
                            ]
                            z_prog[segment_indices] = z_prog_temp[segment_indices]
                            break
                    except mdsExceptions.MdsException:
                        params.logger.debug(
                            "[Shot %s]: %s", params.shot_id, traceback.format_exc()
                        )
                        continue  # TODO: Consider raising appropriate error
                else:
                    continue
                break
        if z_wire_index == -1:
            raise CalculationError("Data source error: No ZCUR wire was found")
        # Read in A_OUT, which is a 16xN matrix of the errors for *all* 16 wires for
        # *all* of the segments. Note that DPCS time is usually taken at 10kHz.
        wire_errors, dpcstime = params.mds_conn.get_data_with_dims(
            r"\top.hardware.dpcs.signals:a_out", tree_name="hybrid", dim_nums=[1]
        )
        # The value of Z_error we read is not in the units we want. It must be *divided*
        #  by a factor AND *divided* by the plasma current.
        z_error_without_factor_and_ip = wire_errors[:, z_wire_index]
        z_error_without_ip = np.empty(z_error_without_factor_and_ip.shape)
        z_error_without_ip.fill(np.nan)
        # Also, it turns out that different segments have different factors. So we
        # search through the active segments (determined above), find the factors,
        # and *divide* by the factor only for the times in the active segment (as
        # determined from start_times and stop_times.
        for i, (_, start) in enumerate(active_wire_segments):
            if i == len(active_wire_segments) - 1:
                end = pcstime[-1]
            else:
                end = active_wire_segments[i + 1][1]
            z_factor = params.mds_conn.get_data(
                rf"\dpcs::top.seg_{i+1:02d}:p_{z_wire_index:02d}:predictor:factor",
                tree_name="hybrid",
            )
            temp_indx = np.where((dpcstime >= start) & (dpcstime <= end))
            z_error_without_ip[temp_indx] = (
                z_error_without_factor_and_ip[temp_indx] / z_factor
            )  # [A*m]
        # Next we grab ip, which comes from a_in:input_056. This also requires
        # *multiplication* by a factor.
        # NOTE that I can't get the following ip_without_factor to work for shots
        # before 2015.
        # TODO: Try to fix this
        if params.shot_id > 1150101000:
            ip_without_factor = params.mds_conn.get_data(
                r"\hybrid::top.hardware.dpcs.signals.a_in:input_056", tree_name="hybrid"
            )
            ip_factor = params.mds_conn.get_data(
                r"\hybrid::top.dpcs_config.inputs:input_056:p_to_v_expr",
                tree_name="hybrid",
            )
            ip = ip_without_factor * ip_factor  # [A]
        else:
            ip, ip_time = params.mds_conn.get_data_with_dims(
                r"\ip", tree_name="magnetics"
            )
            ip = interp1(ip_time, ip, dpcstime)
        return CmodPhysicsMethods._get_z_parameters(
            params.times, z_prog, pcstime, z_error_without_ip, ip, dpcstime
        )

    @staticmethod
    def _get_ohmic_parameters(
        times, v_loop, v_loop_time, li, efittime, dip_smoothed, ip, r0
    ):
        """
        Calculate the ohmic power from the loop voltage, inductive voltage, and
        plasma current.

        Parameters
        ----------
        times : array_like
            The times at which to calculate the ohmic power.
        v_loop : array_like
            The loop voltage.
        v_loop_time : array_like
            The times at which the loop voltage was measured.
        li : array_like
            The plasma's internal inductance from EFIT.
        efittime : array_like
            The EFIT time base.
        dip_smoothed : array_like
            The smoothed time derivative of the measured plasma current.
        ip : array_like
            The plasma current.
        r0 : array_like
            The major radius of the plasma's magnetic axis.

        Returns
        -------
        p_oh : array_like
            The ohmic power.
        v_loop : array_like
            The loop voltage.
        """
        inductance = 4.0 * np.pi * 1.0e-7 * r0 * li / 2.0
        v_loop = interp1(v_loop_time, v_loop, times)
        inductance = interp1(efittime, inductance, times)
        v_inductive = inductance * dip_smoothed
        v_resistive = v_loop - v_inductive
        p_ohm = ip * v_resistive
        output = {"p_oh": p_ohm, "v_loop": v_loop}
        return output

    @staticmethod
    @physics_method(
        columns=["p_oh", "v_loop"],
        tokamak=Tokamak.CMOD,
    )
    def get_ohmic_parameters(params: PhysicsMethodParams):
        """
        Retrieve and calculate ohmic heating parameters.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing the calculated ohmic parameters, including
            "p_oh" and "v_loop".
        """
        v_loop, v_loop_time = params.mds_conn.get_data_with_dims(
            r"\top.mflux:v0", tree_name="analysis", astype="float64"
        )
        if len(v_loop_time) <= 1:
            raise CalculationError("No data for v_loop_time")

        li, efittime = params.mds_conn.get_data_with_dims(
            r"\efit_aeqdsk:li", tree_name="_efit_tree", astype="float64"
        )  # [dimensionless], [s]
        ip_parameters = CmodPhysicsMethods.get_ip_parameters(params=params)
        r0 = 0.01 * params.mds_conn.get_data(
            r"\efit_aeqdsk:rmagx", tree_name="_efit_tree"
        )  # [cm] -> [m]

        output = CmodPhysicsMethods._get_ohmic_parameters(
            params.times,
            v_loop,
            v_loop_time,
            li,
            efittime,
            ip_parameters["dip_smoothed"],
            ip_parameters["ip"],
            r0,
        )
        return output

    @staticmethod
    def _get_power(times, p_lh, t_lh, p_icrf, t_icrf, p_rad, t_rad, p_ohm):
        """
        Calculate the input and radiated powers, and then calculate the
        radiated fraction.

        Parameters
        ----------
        times : np.ndarray
            The time array for which to calculate the power.
        p_lh : np.ndarray or None
            The power from lower hybrid heating.
        t_lh : np.ndarray or None
            The time array corresponding to lower hybrid heating power.
        p_icrf : np.ndarray or None
            The power from ICRF heating.
        t_icrf : np.ndarray or None
            The time array corresponding to ICRF heating power.
        p_rad : np.ndarray or None
            The radiated power.
        t_rad : np.ndarray or None
            The time array corresponding to radiated power.
        p_ohm : np.ndarray
            The ohmic heating power.

        Returns
        -------
        dict
            A dictionary containing the calculated power values, including
            "p_rad", "dprad_dt", "p_lh", "p_icrf", "p_input", and "radiated_fraction".
        """
        if p_lh is not None and isinstance(t_lh, np.ndarray) and len(t_lh) > 1:
            p_lh = interp1(t_lh, p_lh * 1.0e3, times)
        else:
            p_lh = np.zeros(len(times))

        if p_icrf is not None and isinstance(t_icrf, np.ndarray) and len(t_icrf) > 1:
            p_icrf = interp1(t_icrf, p_icrf * 1.0e6, times, bounds_error=False)
        else:
            p_icrf = np.zeros(len(times))

        if (
            t_rad is None
            or p_rad is None
            or not isinstance(t_rad, np.ndarray)
            or len(t_rad) <= 1
        ):
            p_rad = np.array([np.nan] * len(times))  # TODO: Fix
            dprad = p_rad.copy()
        else:
            p_rad = p_rad * 1.0e3  # [W]
            p_rad = p_rad * 4.5  # Factor of 4.5 comes from cross-calibration with
            # 2pi_foil during flattop times of non-disruptive
            # shots, excluding times for
            # which p_rad (uncalibrated) <= 1.e5 W
            dprad = np.gradient(p_rad, t_rad)
            p_rad = interp1(t_rad, p_rad, times)
            dprad = interp1(t_rad, dprad, times)
        p_input = p_ohm + p_lh + p_icrf
        rad_fraction = p_rad / p_input
        rad_fraction[rad_fraction == np.inf] = np.nan
        output = {
            "p_rad": p_rad,
            "dprad_dt": dprad,
            "p_lh": p_lh,
            "p_icrf": p_icrf,
            "p_input": p_input,
            "radiated_fraction": rad_fraction,
        }
        return output

    @staticmethod
    @physics_method(
        columns=["p_rad", "dprad_dt", "p_lh", "p_icrf", "p_input", "radiated_fraction"],
        tokamak=Tokamak.CMOD,
    )
    def get_power(params: PhysicsMethodParams):
        """
        NOTE: the timebase for the LH power signal does not extend over the full
            time span of the discharge.  Therefore, when interpolating the LH power
            signal onto the "timebase" array, the LH signal has to be extrapolated
            with zero values.  This is an option in the 'interp1' routine.  If the
            extrapolation is not done, then the 'interp1' routine will assign NaN
            (Not-a-Number) values for times outside the LH timebase, and the NaN's
            will propagate into p_input and rad_fraction, which is not desirable.
        """
        values = [
            None
        ] * 6  # List to store the time and values of the LH power, icrf power, and radiated power
        trees = ["LH", "RF", "spectroscopy"]
        nodes = [r"\LH::TOP.RESULTS:NETPOW", r"\rf::rf_power_net", r"\twopi_diode"]
        for i in range(3):
            try:
                sig, sig_time = params.mds_conn.get_data_with_dims(
                    nodes[i], tree_name=trees[i], astype="float64"
                )
                values[2 * i] = sig
                values[2 * i + 1] = sig_time
            except (mdsExceptions.TreeFOPENR, mdsExceptions.TreeNNF):
                continue
        p_oh = CmodPhysicsMethods.get_ohmic_parameters(params=params)["p_oh"]
        output = CmodPhysicsMethods._get_power(params.times, *values, p_oh)
        return output

    @staticmethod
    def _get_kappa_area(times, aminor, area, a_times):
        """
        Calculate and interpolate kappa_area

        Parameters
        ----------
        times : np.ndarray
            The time array for which to calculate the kappa_area.
        aminor : np.ndarray
            The minor radius values.
        area : np.ndarray
            The area values.
        a_times : np.ndarray
            The time array corresponding to the area values.

        Returns
        -------
        dict
            A dictionary containing the kappa_area.
        """
        output = {"kappa_area": interp1(a_times, area / (np.pi * aminor**2), times)}
        return output

    @staticmethod
    @physics_method(columns=["kappa_area"], tokamak=Tokamak.CMOD)
    def get_kappa_area(params: PhysicsMethodParams):
        """
        Retrieve and calculate the plasma's ellipticity (kappa, also known as
        the elongation) using its area and minor radius.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing the calculated "kappa_area".
        """
        aminor = params.mds_conn.get_data(
            r"\efit_aeqdsk:aminor", tree_name="_efit_tree", astype="float64"
        )
        area = params.mds_conn.get_data(
            r"\efit_aeqdsk:area", tree_name="_efit_tree", astype="float64"
        )
        times = params.mds_conn.get_data(
            r"\efit_aeqdsk:time", tree_name="_efit_tree", astype="float64"
        )

        aminor[aminor <= 0] = 0.001  # make sure aminor is not 0 or less than 0
        # make sure area is not 0 or less than 0
        area[area <= 0] = 3.14 * 0.001**2
        output = CmodPhysicsMethods._get_kappa_area(params.times, aminor, area, times)
        return output

    @staticmethod
    def _get_rotation_velocity(times, intensity, time, vel, hirextime):
        """
        Uses spectroscopy graphs of ionized (to hydrogen and helium levels) Argon
        to calculate velocity. Because of the heat profile of the plasma, suitable
        measurements are only found near the center.
        """
        v_0 = np.empty(len(time))
        # Check that the argon intensity pulse has a minimum count and duration
        # threshold
        valid_indices = np.where(intensity > 1000 & intensity < 10000)
        # Matlab code just multiplies by time delta but that doesn't work in the
        # case where we have different time deltas. Instead we sum the time deltas
        # for all valid indices to check the total duration
        if np.sum(time[valid_indices + 1] - time[valid_indices]) >= 0.2:
            v_0 = interp1(hirextime, vel, time)
            # TODO: Determine better threshold
            v_0[np.where(abs(v_0) > 200)] = np.nan
            v_0 *= 1000.0
        v_0 = interp1(time, v_0, times)
        return {"v_0": v_0}

    @staticmethod
    @physics_method(
        columns=["n_equal_1_mode", "n_equal_1_normalized", "n_equal_1_phase", "bt"],
        tokamak=Tokamak.CMOD,
    )
    def get_n_equal_1_amplitude(params: PhysicsMethodParams):
        """
        Calculate n=1 amplitude and phase.

        This method uses the four BP13 Bp sensors near the midplane on the outboard
        vessel wall.  The calculation is done by using a least squares fit to an
        expansion in terms of n = 0 & 1 toroidal harmonics.  The BP13 sensors are
        part of the set used for plasma control and equilibrium reconstruction,
        and their signals have been analog integrated (units: tesla), so they
        don't have to be numerically integrated.  These four sensors were working
        well in 2014, 2015, and 2016.  I looked at our locked mode MGI run on
        1150605, and the different applied A-coil phasings do indeed show up on
        the n=1 signal.

        N=1 toroidal assymmetry in the magnetic fields
        """
        # These sensors are placed toroidally around the machine. Letters refer to
        # the 2 ports the sensors were placed between.
        bp13_names = ["BP13_BC", "BP13_DE", "BP13_GH", "BP13_JK"]
        bp13_signals = np.empty((len(params.times), len(bp13_names)))

        path = r"\mag_bp_coils."
        bp_node_names = params.mds_conn.get_data(
            path + "nodename", tree_name="magnetics"
        )
        phi = params.mds_conn.get_data(path + "phi", tree_name="magnetics")
        btor_pickup_coeffs = params.mds_conn.get_data(
            path + "btor_pickup", tree_name="magnetics"
        )
        _, bp13_indices, _ = np.intersect1d(
            bp_node_names, bp13_names, return_indices=True
        )
        bp13_phi = phi[bp13_indices] + 360  # INFO
        bp13_btor_pickup_coeffs = btor_pickup_coeffs[bp13_indices]
        btor, t_mag = params.mds_conn.get_data_with_dims(
            r"\btor", tree_name="magnetics"
        )
        # Toroidal power supply takes time to turn on, from ~ -1.8 and should be
        # on by t=-1. So pick the time before that to calculate baseline
        baseline_indices = np.where(t_mag <= -1.8)
        btor = btor - np.mean(btor[baseline_indices])
        path = r"\mag_bp_coils.signals."
        # For each sensor:
        # 1. Subtract baseline offset
        # 2. Subtract btor pickup
        # 3. Interpolate bp onto shot timebase

        for i, bp13_name in enumerate(bp13_names):
            signal = params.mds_conn.get_data(path + bp13_name, tree_name="magnetics")
            if len(signal) == 1:
                raise CalculationError(f"No data for {bp13_name}")

            baseline = np.mean(signal[baseline_indices])
            signal = signal - baseline
            signal = signal - bp13_btor_pickup_coeffs[i] * btor
            bp13_signals[:, i] = interp1(t_mag, signal, params.times)

        # TODO: Examine edge case behavior of sign
        polarity = np.sign(np.mean(btor))
        btor_magnitude = btor * polarity
        btor_magnitude = interp1(t_mag, btor_magnitude, params.times)
        btor = interp1(t_mag, btor, params.times)  # Interpolate BT with sign

        # Create the 'design' matrix ('A') for the linear system of equations:
        # Bp(phi) = A1 + A2*sin(phi) + A3*cos(phi)
        ncoeffs = 3
        a = np.empty((len(bp13_names), ncoeffs))
        a[:, 0] = np.ones(4)
        a[:, 1] = np.sin(bp13_phi * np.pi / 180.0)
        a[:, 2] = np.cos(bp13_phi * np.pi / 180.0)
        coeffs = np.linalg.pinv(a) @ bp13_signals.T
        # The n=1 amplitude at each time is sqrt(A2^2 + A3^2)
        # The n=1 phase at each time is arctan(-A2/A3), using complex number
        # phasor formalism, exp(i(phi - delta))
        n_equal_1_amplitude = np.sqrt(coeffs[1, :] ** 2 + coeffs[2, :] ** 2)
        # TODO: Confirm arctan2 = atan2
        n_equal_1_phase = np.arctan2(-coeffs[1, :], coeffs[2, :])
        n_equal_1_normalized = n_equal_1_amplitude / btor_magnitude
        # INFO: Debugging purpose block of code at end of matlab file
        # INFO: n_equal_1_amplitude vs n_equal_1_mode
        output = {
            "n_equal_1_mode": n_equal_1_amplitude,
            "n_equal_1_normalized": n_equal_1_normalized,
            "n_equal_1_phase": n_equal_1_phase,
            "bt": btor,
        }
        return output

    @staticmethod
    def _get_densities(times, n_e, t_n, ip, t_ip, a_minor, t_a):
        """
        Calculate electron density, its time derivative, and the Greenwald fraction.

        Parameters
        ----------
        times : array_like
            Time points at which to interpolate the densities.
        n_e : array_like
            Electron density values.
        t_n : array_like
            Corresponding time values for electron density.
        ip : array_like
            Plasma current values.
        t_ip : array_like
            Corresponding time values for plasma current.
        a_minor : array_like
            Minor radius values.
        t_a : array_like
            Corresponding time values for minor radius.

        Returns
        -------
        dict
            A dictionary containing interpolated electron density (`n_e`),
            its time derivative (`dn_dt`), and the Greenwald fraction (`greenwald_fraction`).
        """
        if len(n_e) != len(t_n):
            raise CalculationError("n_e and t_n are different lengths")
        # get the gradient of n_E
        dn_dt = np.gradient(n_e, t_n)
        n_e = interp1(t_n, n_e, times)
        dn_dt = interp1(t_n, dn_dt, times)
        ip = -ip / 1e6  # Convert from A to MA and take positive value
        ip = interp1(t_ip, ip, times)
        a_minor = interp1(t_a, a_minor, times, bounds_error=False, fill_value=np.nan)
        # make sure aminor is not 0 or less than 0
        a_minor[a_minor <= 0] = 0.001
        n_g = abs(ip) / (np.pi * a_minor**2) * 1e20  # Greenwald density in m ^-3
        g_f = n_e / n_g
        output = {"n_e": n_e, "dn_dt": dn_dt, "greenwald_fraction": g_f}
        return output

    @staticmethod
    @physics_method(
        columns=["n_e", "dn_dt", "greenwald_fraction"],
        tokamak=Tokamak.CMOD,
    )
    def get_densities(params: PhysicsMethodParams):
        """
        Retrieve and calculate electron density and related parameters.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing electron density (`n_e`), its gradient (`dn_dt`),
            and the Greenwald fraction (`greenwald_fraction`).
        """
        # Line-integrated density
        n_e, t_n = params.mds_conn.get_data_with_dims(
            r".tci.results:nl_04", tree_name="electrons", astype="float64"
        )
        # Divide by chord length of ~0.6m to get line averaged density.
        # For future refernce, chord length is stored in
        # .01*\analysis::efit_aeqdsk:rco2v[3,*]
        n_e = np.squeeze(n_e) / 0.6
        ip, t_ip = params.mds_conn.get_data_with_dims(
            r"\ip", tree_name="magnetics", astype="float64"
        )
        a_minor, t_a = params.mds_conn.get_data_with_dims(
            r"\efit_aeqdsk:aminor", tree_name="_efit_tree", astype="float64"
        )

        output = CmodPhysicsMethods._get_densities(
            params.times, n_e, t_n, ip, t_ip, a_minor, t_a
        )
        return output

    @staticmethod
    def _get_efc_current(times, iefc, t_iefc):
        """
        Interpolate EFC current values at specified times.

        Parameters
        ----------
        times : array_like
            Time points at which to interpolate the EFC current.
        iefc : array_like
            EFC current values.
        t_iefc : array_like
            Corresponding time values for EFC current.

        Returns
        -------
        dict
            A dictionary containing interpolated EFC current.
        """
        output = {"i_efc": interp1(t_iefc, iefc, times, "linear")}
        return output

    @staticmethod
    @physics_method(columns=["i_efc"], tokamak=Tokamak.CMOD)
    def get_efc_current(params: PhysicsMethodParams):
        """
        Retrieve the error field correction (EFC) current for a given shot.

        Parameters
        ----------
        params : PhysicsMethodParams
            Parameters containing MDS connection and shot information.

        Returns
        -------
        dict
            A dictionary containing the EFC current (`i_efc`).
        """
        iefc, t_iefc = params.mds_conn.get_data_with_dims(
            r"\efc:u_bus_r_cur", tree_name="engineering"
        )
        output = CmodPhysicsMethods._get_efc_current(params.times, iefc, t_iefc)
        return output

    @staticmethod
    def _get_ts_parameters(times, ts_data, ts_time, ts_z, z_sorted=False):
        """
        Calculate the Thomson scattering temperature width parameters.

        Parameters
        ----------
        times : array_like
            Time points at which to interpolate the temperature width.
        ts_data : array_like
            2D array of Thomson scattering temperature data.
        ts_time : array_like
            Corresponding time values for the temperature data.
        ts_z : array_like
            Vertical coordinate values corresponding to the temperature data.
        z_sorted : bool, optional
            If True, assumes `ts_z` is already sorted. Default is False.

        Returns
        -------
        dict
            A dictionary containing the temperature width (`te_width`).
        """
        # sort z array
        if not z_sorted:
            idx = np.argsort(ts_z)
            ts_z = ts_z[idx]
            ts_data = ts_data[idx]
        # init output
        te_hwm = np.full(len(ts_time), np.nan)
        # select valid times
        (valid_times,) = np.where(ts_time > 0)
        # zero out nan values
        ts_data = np.nan_to_num(ts_data, copy=False, nan=0)
        # for each valid time
        for idx in valid_times:
            # select non-zero indices
            y = ts_data[:, idx]
            (ok_indices,) = np.where(y != 0)
            # skip if not enough points
            if len(ok_indices) < 3:
                continue
            # working arrays
            y = y[ok_indices]
            z = ts_z[ok_indices]
            # initial guess
            i = y.argmax()
            guess = [y[i], z[i], (z.max() - z.min()) / 3]
            # actual fit
            try:
                _, _, psigma = gaussian_fit(z, y, guess)
            except RuntimeError as exc:
                if str(exc).startswith("Optimal parameters not found"):
                    continue
                raise exc
            # store output
            te_hwm[idx] = np.abs(psigma)
        # rescale from sigma to HWHM
        # https://en.wikipedia.org/wiki/Full_width_at_half_maximum
        te_hwm *= np.sqrt(2 * np.log(2))
        # time interpolation
        te_hwm = interp1(ts_time, te_hwm, times)
        return {"te_width": te_hwm}

    @staticmethod
    @physics_method(columns=["te_width"], tokamak=Tokamak.CMOD)
    def get_ts_parameters(params: PhysicsMethodParams):
        """
        Retrieve Thomson scattering temperature width parameters.

        Parameters
        ----------
        params : PhysicsMethodParams
            Parameters containing MDS connection and shot information.

        Returns
        -------
        dict
            A dictionary containing the temperature width (`te_width`).
        """
        # TODO: Gaussian vs parabolic fit for te profile

        # Read in Thomson core temperature data, which is a 2-D array, with the
        # dependent dimensions being time and z (vertical coordinate)
        node_path = ".yag_new.results.profiles"

        ts_data, ts_time = params.mds_conn.get_data_with_dims(
            node_path + ":te_rz", tree_name="electrons"
        )
        ts_z = params.mds_conn.get_data(node_path + ":z_sorted", tree_name="electrons")

        output = CmodPhysicsMethods._get_ts_parameters(
            params.times, ts_data, ts_time, ts_z
        )
        return output

    @staticmethod
    def _get_peaking_factors(times, ts_time, ts_te, ts_ne, ts_z, efit_time, bminor, z0):
        """
        Calculate Te, ne, and pressure peaking factors given Thomson Scattering
        Te and ne measurements.

        Because the TS chords have uneven spacings, measurements are first interpolated
        to an array of equally spaced vertical positions and then used to calculate
        the peaking factors.

        Parameters:
        ----------
        times : array_like
            Requested time basis
        ts_time : array_like
            Time basis of the Thomson Scattering diagnostic
        ts_te : array_like
            Core and edge Te measurements from TS
        ts_ne : array_like
            Core and edge ne measurements from TS
        ts_z : array_like
            Vertical position of the core and edge TS chords
        efit_time : array_like
            Time basis of '_efit_tree'
        bminor : array_like
            Vertical minor radius from EFIT
        z0 : array_like
            Vertical position of the magnetic axis from EFIT

        Returns:
        ----------
        DataFrame of ne_peaking, Te_peaking, and pressure_peaking

        References:
        ----------
        - https://github.com/MIT-PSFC/disruption-py/blob/matlab/CMOD/matlab-core/get_peaking_factor_cmod.m  # pylint: disable=line-too-long
        - https://github.com/MIT-PSFC/disruption-py/issues/210
        - https://github.com/MIT-PSFC/disruption-py/pull/216
        - https://github.com/MIT-PSFC/disruption-py/pull/268

        Last major update by: William Wei on 8/19/2024

        """
        # Calculate ts_pressure
        ts_pressure = ts_te * ts_ne * 1.38e-23
        # Interpolate EFIT signals to TS time basis
        bminor = interp1(efit_time, bminor, ts_time)
        z0 = interp1(efit_time, z0, ts_time)

        # Calculate Te, ne, & pressure peaking factors
        te_pf = np.full(len(ts_time), np.nan)
        ne_pf = np.full(len(ts_time), np.nan)
        pressure_pf = np.full(len(ts_time), np.nan)
        (itimes,) = np.where((ts_time > 0) & (ts_time < times[-1]))
        for itime in itimes:
            ts_te_arr = ts_te[:, itime]
            ts_ne_arr = ts_ne[:, itime]
            ts_pressure_arr = ts_pressure[:, itime]
            # This gives identical results using either ts_te_arr or ts_ne_arr
            (indx,) = np.where(ts_ne_arr > 0)
            if len(indx) < 10:
                continue
            ts_te_arr = ts_te_arr[indx]
            ts_ne_arr = ts_ne_arr[indx]
            ts_pressure_arr = ts_pressure_arr[indx]
            ts_z_arr = ts_z[indx]
            sorted_indx = np.argsort(ts_z_arr)
            ts_z_arr = ts_z_arr[sorted_indx]
            ts_te_arr = ts_te_arr[sorted_indx]
            ts_ne_arr = ts_ne_arr[sorted_indx]
            ts_pressure_arr = ts_pressure_arr[sorted_indx]
            # Create equal-spacing array of ts_z_arr and interpolate TS profile on it
            # Skip if there's no EFIT zmagx data
            if np.isnan(z0[itime]):
                continue
            z_arr_equal_spacing = np.linspace(z0[itime], ts_z_arr[-1], len(ts_z_arr))
            te_arr_equal_spacing = interp1(ts_z_arr, ts_te_arr, z_arr_equal_spacing)
            ne_arr_equal_spacing = interp1(ts_z_arr, ts_ne_arr, z_arr_equal_spacing)
            pressure_arr_equal_spacing = interp1(
                ts_z_arr, ts_pressure_arr, z_arr_equal_spacing
            )
            # Calculate peaking factors
            (core_index,) = np.where(
                np.array((z_arr_equal_spacing - z0[itime]) < 0.2 * abs(bminor[itime]))
            )
            if len(core_index) < 2:
                continue
            te_pf[itime] = np.mean(te_arr_equal_spacing[core_index]) / np.mean(
                te_arr_equal_spacing
            )
            ne_pf[itime] = np.mean(ne_arr_equal_spacing[core_index]) / np.mean(
                ne_arr_equal_spacing
            )
            pressure_pf[itime] = np.mean(
                pressure_arr_equal_spacing[core_index]
            ) / np.mean(pressure_arr_equal_spacing)

        # Interpolate peaking factors to the requested time basis
        ne_pf = interp1(ts_time, ne_pf, times, "linear")
        te_pf = interp1(ts_time, te_pf, times, "linear")
        pressure_pf = interp1(ts_time, pressure_pf, times, "linear")
        return {
            "ne_peaking": ne_pf,
            "te_peaking": te_pf,
            "pressure_peaking": pressure_pf,
        }

    @staticmethod
    @physics_method(
        columns=["ne_peaking", "te_peaking", "pressure_peaking"],
        tokamak=Tokamak.CMOD,
    )
    def get_peaking_factors(params: PhysicsMethodParams):
        """
        Calculate peaking factors for electron density, electron temperature, and
        pressure.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing peaking factors for electron density (`ne_peaking`),
            temperature (`te_peaking`), and pressure (`pressure_peaking`).
        """
        use_ts_tci_calibration = False
        # Ignore shots on the blacklist
        if CmodPhysicsMethods.is_on_blacklist(params.shot_id):
            raise CalculationError("Shot is on blacklist")
        # Fetch data
        # Get EFIT geometry data
        z0 = 0.01 * params.mds_conn.get_data(
            r"\efit_aeqdsk:zmagx", tree_name="_efit_tree"
        )
        kappa = params.mds_conn.get_data(r"\efit_aeqdsk:kappa", tree_name="_efit_tree")
        aminor, efit_time = params.mds_conn.get_data_with_dims(
            r"\efit_aeqdsk:aminor", tree_name="_efit_tree"
        )
        bminor = aminor * kappa

        # Get Te data and TS time basis
        node_ext = ".yag_new.results.profiles"
        ts_te_core, ts_time = params.mds_conn.get_data_with_dims(
            f"{node_ext}:te_rz", tree_name="electrons"
        )
        ts_te_core = ts_te_core * 1000  # [keV] -> [eV]
        ts_te_edge = params.mds_conn.get_data(r"\ts_te")
        ts_te = np.concatenate((ts_te_core, ts_te_edge)) * 11600  # [eV] -> [K]

        # Get ne data
        ts_ne_core = params.mds_conn.get_data(
            f"{node_ext}:ne_rz", tree_name="electrons"
        )
        ts_ne_edge = params.mds_conn.get_data(r"\ts_ne")
        ts_ne = np.concatenate((ts_ne_core, ts_ne_edge))

        # Get TS chord positions
        ts_z_core = params.mds_conn.get_data(
            f"{node_ext}:z_sorted", tree_name="electrons"
        )
        ts_z_edge = params.mds_conn.get_data(r"\fiber_z", tree_name="electrons")
        ts_z = np.concatenate((ts_z_core, ts_z_edge))
        # Make sure that there are equal numbers of edge position and edge temperature points
        if len(ts_z_edge) != ts_te_edge.shape[0]:
            raise CalculationError(
                "TS edge data and z positions are not the same length for shot"
            )

        # Calibrate ts_ne using TCI -- slow
        if use_ts_tci_calibration:
            # This shouldn't affect ne_PF (except if calib is not between 0.5 & 1.5)
            # because we're just multiplying ne by a constant
            (nl_ts1, nl_ts2, nl_tci1, nl_tci2, _, _) = (
                CmodThomsonDensityMeasure.compare_ts_tci(params)
            )
            if np.mean(nl_ts1) != 1e32 and np.mean(nl_ts2) != 1e32:
                nl_tci = np.concatenate((nl_tci1, nl_tci2))
                nl_ts = np.concatenate((nl_ts1 + nl_ts2))
                calib = np.mean(nl_tci) / np.mean(nl_ts)
            elif np.mean(nl_ts1) != 1e32 and np.mean(nl_ts2) == 1e32:
                calib = np.mean(nl_tci1) / np.mean(nl_ts1)
            elif np.mean(nl_ts1) == 1e32 and np.mean(nl_ts2) != 1e32:
                calib = np.mean(nl_tci2) / np.mean(nl_ts2)
            else:
                calib = np.nan

            if 0.5 < calib < 1.5:
                ts_ne *= calib
            else:
                raise CalculationError(
                    "Density calibration error exceeds acceptable range"
                )

        return CmodPhysicsMethods._get_peaking_factors(
            params.times, ts_time, ts_te, ts_ne, ts_z, efit_time, bminor, z0
        )

    @staticmethod
    def _get_te_profile_params_ece(
        times,
        gpc1_te_data,
        gpc1_te_time,
        gpc1_rad_data,
        gpc1_rad_time,
        gpc2_te_data,
        gpc2_te_time,
        gpc2_rad_data,
        gpc2_rad_time,
        efit_time,
        r0,
        aminor,
        btor,
        t_mag,
        lh_power,
        lh_time,
    ):
        """
        Calculates Te PF and width from ECE data using the two GPC diagnostic systems.
        GPC diagnostics look at the mid-plane, and each channel detects a different
        emitted frequency associated with the second harmonic, which depends on B and
        therefore R.
        - te_width is the half-width at half-max of a Gaussian fit of the Te profile
        - te_core_vs_avg is defined as mean(core)/mean(all) where core bins are defined
          as those w/ |R - R0| < 0.2*a of the magnetic axis.
        - te_edge_vs_avg is defined as mean(edge)/mean(all) where edge bins are defined as
          those with 0.8*a < |R - R0| < a
        For core and edge vs. average calculations, different shots can have different
        radial sampling, and during a few experiments on C-Mod, Bt was changed during
        the shot, changing the radial sampling. Different radial samplings can have
        different proportions of core to edge sampling, which affects the mean Te over
        the whole profile, biasing the core vs average and edge vs average statistics.
        Therefore, we use a uniformly sampled radial basis from R0 to R0+a. We use many
        interpolated radial points to minimize artifacts caused by a point moving
        across the arbitrary core or edge boundary.

        ECE as a Te profile diagnostic can suffer from several artifacts:
        Artifacts currently NOT explicitly checked for
        - Density cutoffs: High ne plasmas (typically H-modes) can have an ECE cutoff.
          According to Amanda Hubbard, "what you wil see is a section of profile which
          is much LOWER than Thomson Scattering, for some portion of the LFS profile
          (typically starting around r/a 0.8?). In this case ECE cannot be used." An
          example shot with ECE cutoffs is 1140226024 (Calibration of Thomson density
          using ECE cutoffs). Because the critical density is proportional to B^2,
          shots with B = 5.4 T on axis would need to have very high densities to
          experience a cutoff in the profile. We could look for cutoffs by comparing
          the B profile to the ne profile and checking that ne < ncrit throughout the
          profile; however, a simpler check for now is to ignore shots with B < 4.5 T
          and assume there are no cutoffs with B >= 4.5 T.
        Artifacts currently checked for
        - Non-aligned grating: The gratings were usually aligned for radial coverage
          assuming Bt=5.4T. For low Bt shots (like 2.8T), sometimes the gratings were
          adjusted, sometimes not. Low Bt shots also tend to have low signal and often
          experience density cutoffs. Therefore, ECE should be avoided in automated
          calculations for low Bt shots.
        - Non-thermal emission. The calculation of Te vs. r assumes that the second
          harmonic emission can be modeled as black-body emission, which assumes the
          electrons are in thermal equilibrium. On C-Mod, non-thermal emission results
          in an apparent Te that goes UP towards the edge and in the SOL, which is
          actually downshifted non-thermal emission from deeper in the core.
          Significant runaway populations and LHCD lead to non-thermal artifacts.
          Occasionally low ne shots also had non-thermal artifacts.
        - Harmonic overlap: Certain channels can pick up emission from different
          harmonics from other regions of the plasma. Generally channels with R < 0.6 m
          suffer from overlap with 3rd harmonic emission from the core. This leads to
          an apparently higher Te for R < 0.6 m than in reality. The gratings were
          usually aligned to measure the profile from the core outwards for this
          reason.

        Parameters
        ----------
        times : array_like
            Requested time basis
        gpc1_te_array: array_like
            Te measurements from GPC diagnostic
        gpc1_te_time: array_like
            Time basis of GPC Te measurements
        gpc1_rad_data: array_like
            Radial positions corresponding to GPC channels
        gpc1_rad_time: array_like
            Time basis of GPC channel radial positions
        gpc2_te_array: array_like
            Te measurements from GPC2 diagnostic
        gpc2_te_time: array_like
            Time basis of GPC2 Te measurements
        gpc2_rad_data: array_like
            Radial positions corresponding to GPC2 channels
        gpc2_rad_time: array_like
            Time basis of GPC2 channel radial positions
        efit_time : array_like
            Time basis of '_efit_tree'
        r0 : array_like
            Radial position of the magnetic axis from EFIT
        aminor : array_like
            Horizontal minor radius from EFIT
        btor: array_like
            On-axis toroidal field from magnetics
        t_mag: array_like
            Time basis of magnetic diagnostic measurements
        lh_power: array_like
            Lower hybrid power
        lh_time: array_like
            Time basis of lower hybrid power

        Returns
        -------
        Dictionary of ne_peaking, Te_peaking, and pressure_peaking

        Sources:
        - https://github.com/MIT-PSFC/disruption-py/blob/matlab/CMOD/matlab-core/
          get_ECE_data_cmod.m
        - K. Zhurovich, et. al. "Calibration of Thomson scattering systems using
          electron cyclotron emission cutoff data," Rev. Sci. Instrum., vol. 76, no. 5,
          p. 053506, 2005, doi: 10.1063/1.1899311.
        - https://github.com/MIT-PSFC/disruption-py/pull/260

        Last Major Update: Henry Wietfeldt (08/28/24), (PR: #260)
        """

        # Constants
        core_bound_factor = 0.2
        edge_bound_factor = 0.8
        min_okay_channels = 9
        min_te = 0.02  # [keV]
        min_btor = 4.5  # [T]
        max_lh_power = 1.0  # [kW]
        min_r_to_avoid_harmonic_overlap = 0.6  # [m]
        rising_tail_factor = 1.2

        # Only use EFITs starting after the GPC diagnostic has profiles.
        if len(gpc1_rad_time) > 0:
            efit_time = efit_time[
                efit_time >= max(np.max(gpc1_rad_time[:, 0]), gpc2_rad_time[0])
            ]
        else:
            efit_time = efit_time[efit_time >= gpc2_rad_time[0]]

        # Interpolate GPC data onto efit timebase. Timebase for radial measurements is
        # slower than efit but radial positions are approx. stable so linear
        # interpolation is safe.
        n_channels = gpc1_te_data.shape[0]
        gpc1_te = np.full((n_channels, len(efit_time)), np.nan)
        gpc1_rad = np.full((n_channels, len(efit_time)), np.nan)
        for i in range(n_channels):
            gpc1_te[i, :] = interp1(gpc1_te_time[i, :], gpc1_te_data[i, :], efit_time)
            if len(gpc1_rad_data[i, :]) > 1:
                gpc1_rad[i, :] = interp1(
                    gpc1_rad_time[i, :], gpc1_rad_data[i, :], efit_time
                )
            else:
                gpc1_rad[i, :] = np.full(len(efit_time), np.nan)

        n_channels = gpc2_te_data.shape[0]
        gpc2_te = np.full((n_channels, len(efit_time)), np.nan)
        gpc2_rad = np.full((n_channels, len(efit_time)), np.nan)
        for i in range(n_channels):
            gpc2_te[i, :] = interp1(gpc2_te_time, gpc2_te_data[i, :], efit_time)
            if len(gpc2_rad_data[i, :]) > 1:
                gpc2_rad[i, :] = interp1(gpc2_rad_time, gpc2_rad_data[i, :], efit_time)
            else:
                gpc2_rad[i, :] = np.full(len(efit_time), np.nan)

        # Combine GPC systems and extend the last radii measurement up until the last
        # EFIT. Radii depend on Bt, which should be stable until the current quench.
        te = np.concatenate((gpc1_te, gpc2_te), axis=0)
        radii = np.concatenate((gpc1_rad, gpc2_rad), axis=0)
        indx_last_rad = np.argmax(efit_time > gpc2_rad_time[-1]) - 1
        for i in range(len(radii)):
            radii[i, indx_last_rad + 1 :] = radii[i, indx_last_rad]

        # Remaining calculations loop over time then radii so transpose for efficient
        # caching
        te = te.T
        radii = radii.T
        for i in range(len(efit_time)):
            sorted_index = np.argsort(radii[i, :])
            radii[i, :] = radii[i, sorted_index]
            te[i, :] = te[i, sorted_index]

        # Time slices with low Btor are unreliable because gratings are often not
        # aligned to field, signal is low, and there are frequent density cutoffs.
        # Time slices with LH heating are unreliable because direct electron heating
        # leads to non-thermal emission
        btor = interp1(t_mag, btor, efit_time)
        if len(lh_time) > 1:
            lh_power = interp1(lh_time, lh_power, efit_time)
        else:
            lh_power = np.zeros(len(efit_time))
        lh_power = np.nan_to_num(lh_power, nan=0.0)
        (okay_time_indices,) = np.where(
            (np.abs(btor) > min_btor) & (lh_power < max_lh_power)
        )

        # Main loop for calculations
        te_core_vs_avg = np.full(len(efit_time), np.nan)
        te_edge_vs_avg = np.full(len(efit_time), np.nan)
        te_hwhm = np.full(len(efit_time), np.nan)
        for i in okay_time_indices:
            # Only consider points that are likely to accurately measure Te
            calib_indices = (te[i, :] > min_te) & (radii[i, :] > 0)
            harmonic_overlap_indices = radii[i, :] < min_r_to_avoid_harmonic_overlap
            nonthermal_overlap_indices = np.full(len(radii[i, :]), False)

            # Identify rising tail (overlap with non-thermal emission). Finding the min
            # Te near the edge and checking outwards for a rising tail seems to do well
            calib_edge = calib_indices & (
                radii[i, :] > r0[i] + edge_bound_factor * aminor[i]
            )
            if np.sum(calib_edge) > 0:
                te_edge = np.min(te[i, calib_edge])
                indx_edge = np.argmin(np.abs(te[i, :] - te_edge))
                for j in range(len(te[i, :]) - 1 - indx_edge):
                    if te[i, indx_edge + j + 1] > rising_tail_factor * te[i, indx_edge]:
                        nonthermal_overlap_indices[indx_edge + j + 1] = True
            okay_indices = (
                calib_indices
                & (~harmonic_overlap_indices)
                & (~nonthermal_overlap_indices)
            )

            if np.sum(okay_indices) > min_okay_channels:
                # Estimate Te width using Gaussian fit with center fixed on mag. axis
                r = radii[i, okay_indices]
                y = te[i, okay_indices]
                guess = [y.max(), (y.max() - y.min()) / 3]
                try:
                    pmu = r0[i]
                    _, psigma = gaussian_fit_with_fixed_mean(pmu, r, y, guess)
                except RuntimeError as exc:
                    if str(exc).startswith("Optimal parameters not found"):
                        continue
                    raise exc

                # rescale from sigma to HWHM
                # https://en.wikipedia.org/wiki/Full_width_at_half_maximum
                te_hwhm[i] = np.abs(psigma) * np.sqrt(2 * np.log(2))

                # Calculate core/edge vs. average using uniformly sampled radial basis
                r_equal_spaced = np.linspace(r0[i], r0[i] + aminor[i], 100)
                te_equal_spaced = interp1(
                    r, y, r_equal_spaced, fill_value=(y[0], y[-1])
                )
                core_indices = (
                    np.abs(r_equal_spaced - r0[i]) < core_bound_factor * aminor[i]
                ) & (~np.isnan(te_equal_spaced))
                edge_indices = (
                    np.abs(r_equal_spaced - r0[i]) > edge_bound_factor * aminor[i]
                ) & (~np.isnan(te_equal_spaced))
                if np.sum(core_indices) > 0:
                    te_core_vs_avg[i] = np.nanmean(
                        te_equal_spaced[core_indices]
                    ) / np.nanmean(te_equal_spaced)
                if np.sum(edge_indices) > 0:
                    te_edge_vs_avg[i] = np.nanmean(
                        te_equal_spaced[edge_indices]
                    ) / np.nanmean(te_equal_spaced)

        te_core_vs_avg = interp1(efit_time, te_core_vs_avg, times)
        te_edge_vs_avg = interp1(efit_time, te_edge_vs_avg, times)
        te_hwhm = interp1(efit_time, te_hwhm, times)
        return {
            "te_core_vs_avg_ece": te_core_vs_avg,
            "te_edge_vs_avg_ece": te_edge_vs_avg,
            "te_width_ece": te_hwhm,
        }

    @staticmethod
    @physics_method(
        columns=["te_core_vs_avg_ece", "te_edge_vs_avg_ece", "te_width_ece"],
        tokamak=Tokamak.CMOD,
    )
    def get_te_profile_params_ece(params: PhysicsMethodParams):
        """
        Gets MDSplus data to be used in the calculations of te profile parameters
        from ECE data
        Parameters
        ----------
        params: PhysicsMethodParams
            The parameters storing the requested time base, shot id, etc
        Returns
        ----------
        Output of get_te_profile_params_ece(), which processes the MDSplus data

        Last Major Update: Henry Wietfeldt (8/28/24)
        """

        # Constants
        n_gpc1_channels = 9

        # Get magnetic axis data from EFIT
        r0 = 0.01 * params.mds_conn.get_data(
            r"\efit_aeqdsk:rmagx", tree_name="_efit_tree"
        )  # [cm] -> [m]
        aminor, efit_time = params.mds_conn.get_data_with_dims(
            r"\efit_aeqdsk:aminor", tree_name="_efit_tree"
        )  # [m], [s]

        # Btor and LH Power used for filtering okay time slices
        btor, t_mag = params.mds_conn.get_data_with_dims(
            r"\btor", tree_name="magnetics"
        )
        try:
            lh_power, lh_time = params.mds_conn.get_data_with_dims(
                ".results:netpow", tree_name="lh"
            )  # [kW], [s]
        except mdsExceptions.MdsException:
            # When LH power is off, it's often not stored in tree or it's a single 0.
            lh_power = 0.0
        if not isinstance(lh_power, np.ndarray):
            lh_time = np.copy(efit_time)
            lh_power = np.zeros(len(efit_time))

        # Read in Te profile measurements from 9 GPC1 ("GPC" in MDSplus tree) channels
        node_path = ".ece.gpc_results"
        gpc1_te_data = []
        gpc1_te_time = []
        gpc1_rad_data = []
        gpc1_rad_time = []
        for i in range(n_gpc1_channels):
            try:
                te_data, te_time = params.mds_conn.get_data_with_dims(
                    node_path + ".te:te" + str(i + 1), tree_name="electrons"
                )  # [keV], [s]
                rad_data, rad_time = params.mds_conn.get_data_with_dims(
                    node_path + ".rad:r" + str(i + 1), tree_name="electrons"
                )  # [m], [s]
                # For C-Mod shot 1120522025 (and maybe others), rad_time is strings.
                # Don't use channel in that case
                if np.issubdtype(rad_time.dtype, np.floating):
                    gpc1_te_data.append(te_data)
                    gpc1_te_time.append(te_time)
                    gpc1_rad_data.append(rad_data)
                    gpc1_rad_time.append(rad_time)
            except mdsExceptions.MdsException:
                continue
        gpc1_te_data = np.array(gpc1_te_data)
        gpc1_te_time = np.array(gpc1_te_time)
        gpc1_rad_data = np.array(gpc1_rad_data)
        gpc1_rad_time = np.array(gpc1_rad_time)

        # Read in Te profile measurements from GPC2 (19 channels)
        node_path = ".gpc_2.results"
        gpc2_te_data, gpc2_te_time = params.mds_conn.get_data_with_dims(
            node_path + ":gpc2_te", tree_name="electrons"
        )  # [keV], [s]
        gpc2_rad_data, gpc2_rad_time = params.mds_conn.get_data_with_dims(
            node_path + ":radii", tree_name="electrons"
        )  # [m], [s]

        return CmodPhysicsMethods._get_te_profile_params_ece(
            params.times,
            gpc1_te_data,
            gpc1_te_time,
            gpc1_rad_data,
            gpc1_rad_time,
            gpc2_te_data,
            gpc2_te_time,
            gpc2_rad_data,
            gpc2_rad_time,
            efit_time,
            r0,
            aminor,
            btor,
            t_mag,
            lh_power,
            lh_time,
        )

    @staticmethod
    @physics_method(
        columns=["prad_peaking"],
        tokamak=Tokamak.CMOD,
    )
    def get_prad_peaking(params: PhysicsMethodParams):
        """
        Calculate the peaking factor for radiated power.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing the peaking factor for radiated power (`prad_peaking`).
        """
        prad_peaking = np.full(len(params.times), np.nan)
        nan_output = {"prad_peaking": prad_peaking}
        r0 = 0.01 * params.mds_conn.get_data(
            r"\efit_aeqdsk:rmagx", tree_name="_efit_tree"
        )
        z0 = 0.01 * params.mds_conn.get_data(
            r"\efit_aeqdsk:zmagx", tree_name="_efit_tree"
        )
        aminor, efit_time = params.mds_conn.get_data_with_dims(
            r"\efit_aeqdsk:aminor", tree_name="_efit_tree"
        )
        got_axa = False
        try:
            bright_axa, t_axa, r_axa = params.mds_conn.get_data_with_dims(
                r"\SPECTROSCOPY::TOP.BOLOMETER.RESULTS.DIODE.AXA:BRIGHT",
                tree_name="spectroscopy",
                dim_nums=[1, 0],
            )
            z_axa = params.mds_conn.get_data(
                r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXA:Z_O",
                tree_name="spectroscopy",
            )
            good_axa = params.mds_conn.get_data(
                r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXA:GOOD",
                tree_name="spectroscopy",
            )
            got_axa = True
        except mdsExceptions.MdsException:
            params.logger.debug("[Shot %s]: Failed to get AXA data", params.shot_id)
        got_axj = False
        try:
            bright_axj, t_axj, r_axj = params.mds_conn.get_data_with_dims(
                r"\SPECTROSCOPY::TOP.BOLOMETER.RESULTS.DIODE.AXJ:BRIGHT",
                tree_name="spectroscopy",
                dim_nums=[1, 0],
            )
            z_axj = params.mds_conn.get_data(
                r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXJ:Z_O",
                tree_name="spectroscopy",
            )
            good_axj = params.mds_conn.get_data(
                r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXJ:GOOD",
                tree_name="spectroscopy",
            )
            got_axj = True
        except mdsExceptions.MdsException:
            params.logger.debug("[Shot %s]: Failed to get AXJ data", params.shot_id)
        if not (got_axa or got_axj):
            return nan_output
        a_minor = interp1(efit_time, aminor, params.times)
        r0 = interp1(efit_time, r0, params.times)
        z0 = interp1(efit_time, z0, params.times)
        if got_axa:
            good_axa = np.where(good_axa > 0)[0]
            bright_axa = bright_axa[:, good_axa]
            axa_interp = np.full((bright_axa.shape[1], len(params.times)), np.nan)
            r_axa = r_axa[good_axa]
            for i in range(bright_axa.shape[1]):
                interped = interp1(t_axa.T, bright_axa[:, i], params.times.T)
                indx = np.where(interped < 0)
                interped[indx] = np.nan
                axa_interp[i, :] = interped
        if got_axj:
            good_axj = np.where(good_axj > 0)[0]
            bright_axj = bright_axj[:, good_axj]
            axj_interp = np.full((bright_axj.shape[1], len(params.times)), np.nan)
            r_axj = r_axj[good_axj]
            for i in range(bright_axj.shape[1]):
                interped = interp1(t_axj.T, bright_axj[:, i], params.times.T)
                indx = np.where(interped < 0)
                interped[indx] = np.nan
                axj_interp[i, :] = interped
        for i in range(len(params.times)):
            core_radiation = np.array([])
            all_radiation = np.array([])
            if got_axa:
                axa_dist = np.sqrt((r_axa - r0[i]) ** 2 + (z0[i] - z_axa) ** 2)
                axa_core_index = axa_dist < 0.2 * a_minor[i]
                core_radiation = np.append(
                    core_radiation, axa_interp[axa_core_index, i]
                )
                all_radiation = np.append(all_radiation, axa_interp[:, i])
            if got_axj:
                axj_dist = np.sqrt((r_axj - r0[i]) ** 2 + (z0[i] - z_axj) ** 2)
                axj_core_index = axj_dist < 0.2 * a_minor[i]
                core_radiation = np.append(
                    core_radiation, axj_interp[axj_core_index, i]
                )
                all_radiation = np.append(all_radiation, axj_interp[:, i])
            with warnings.catch_warnings():
                warnings.filterwarnings(action="ignore", message="Mean of empty slice")
                prad_peaking[i] = np.nanmean(core_radiation) / np.nanmean(all_radiation)
        return {"prad_peaking": prad_peaking}

    # TODO: get more accurate description of soft x-ray data
    @staticmethod
    @physics_method(columns=["sxr"], tokamak=Tokamak.CMOD)
    def get_sxr_data(params: PhysicsMethodParams):
        """
        Retrieve soft X-ray (SXR) data from array 1 chord 16 for a given shot.

        Parameters
        ----------
        params : PhysicsMethodParams
            The parameters containing the MDSplus connection, shot id and more.

        Returns
        -------
        dict
            A dictionary containing the soft X-ray data (`sxr`).
        """
        sxr, t_sxr = params.mds_conn.get_data_with_dims(
            r"\top.brightnesses.array_1:chord_16",
            tree_name="xtomo",
            astype="float64",
        )
        sxr = interp1(t_sxr, sxr, params.times)
        return {"sxr": sxr}

    @staticmethod
    def is_on_blacklist(shot_id: int) -> bool:
        """
        TODO why will these shots cause `_get_peaking_factors`,
        `_get_peaking_factors_no_tci`, and `_get_edge_parameters` to fail?
        """
        if (
            1120000000 < shot_id < 1120213000
            or 1140000000 < shot_id < 1140227000
            or 1150000000 < shot_id < 1150610000
            or 1160000000 < shot_id < 1160303000
        ):
            return True
        return False

get_densities staticmethod ¤

get_densities(params: PhysicsMethodParams)

Retrieve and calculate electron density and related parameters.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing electron density (n_e), its gradient (dn_dt), and the Greenwald fraction (greenwald_fraction).

Source code in disruption_py/machine/cmod/physics.py
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
@staticmethod
@physics_method(
    columns=["n_e", "dn_dt", "greenwald_fraction"],
    tokamak=Tokamak.CMOD,
)
def get_densities(params: PhysicsMethodParams):
    """
    Retrieve and calculate electron density and related parameters.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing electron density (`n_e`), its gradient (`dn_dt`),
        and the Greenwald fraction (`greenwald_fraction`).
    """
    # Line-integrated density
    n_e, t_n = params.mds_conn.get_data_with_dims(
        r".tci.results:nl_04", tree_name="electrons", astype="float64"
    )
    # Divide by chord length of ~0.6m to get line averaged density.
    # For future refernce, chord length is stored in
    # .01*\analysis::efit_aeqdsk:rco2v[3,*]
    n_e = np.squeeze(n_e) / 0.6
    ip, t_ip = params.mds_conn.get_data_with_dims(
        r"\ip", tree_name="magnetics", astype="float64"
    )
    a_minor, t_a = params.mds_conn.get_data_with_dims(
        r"\efit_aeqdsk:aminor", tree_name="_efit_tree", astype="float64"
    )

    output = CmodPhysicsMethods._get_densities(
        params.times, n_e, t_n, ip, t_ip, a_minor, t_a
    )
    return output

get_efc_current staticmethod ¤

get_efc_current(params: PhysicsMethodParams)

Retrieve the error field correction (EFC) current for a given shot.

PARAMETER DESCRIPTION
params

Parameters containing MDS connection and shot information.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the EFC current (i_efc).

Source code in disruption_py/machine/cmod/physics.py
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
@staticmethod
@physics_method(columns=["i_efc"], tokamak=Tokamak.CMOD)
def get_efc_current(params: PhysicsMethodParams):
    """
    Retrieve the error field correction (EFC) current for a given shot.

    Parameters
    ----------
    params : PhysicsMethodParams
        Parameters containing MDS connection and shot information.

    Returns
    -------
    dict
        A dictionary containing the EFC current (`i_efc`).
    """
    iefc, t_iefc = params.mds_conn.get_data_with_dims(
        r"\efc:u_bus_r_cur", tree_name="engineering"
    )
    output = CmodPhysicsMethods._get_efc_current(params.times, iefc, t_iefc)
    return output

get_ip_parameters staticmethod ¤

get_ip_parameters(params: PhysicsMethodParams)

Retrieve and interpolate Ip parameters.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the interpolated Ip parameters, including "ip", "dip_dt", "dip_smoothed", "ip_prog", "dipprog_dt", and "ip_error".

Source code in disruption_py/machine/cmod/physics.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
@staticmethod
@physics_method(
    columns=["ip", "dip_dt", "dip_smoothed", "ip_prog", "dipprog_dt", "ip_error"],
    tokamak=Tokamak.CMOD,
)
def get_ip_parameters(params: PhysicsMethodParams):
    """
    Retrieve and interpolate Ip parameters.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing the interpolated Ip parameters, including
        "ip", "dip_dt", "dip_smoothed", "ip_prog", "dipprog_dt", and "ip_error".
    """
    # Automatically generated
    active_segments = CmodPhysicsMethods._get_active_wire_segments(params=params)

    # Default PCS timebase is 1 KHZ
    pcstime = np.array(np.arange(-4, 12.383, 0.001))
    ip_prog = np.full(pcstime.shape, np.nan)

    # For each active segment:
    # 1.) Find the wire for IP control and check if it has non-zero PID gains
    # 2.) IF it does, interpolate IP programming onto the PCS timebase
    # 3.) Clip to the start and stop times of PCS timebase
    for node_path, start in active_segments:
        # Ip wire can be one of 16 but is normally no. 16
        for wire_index in range(16, 0, -1):
            wire_node_name = params.mds_conn.get_data(
                node_path + f":P_{wire_index :02d}:name", tree_name="pcs"
            )
            if wire_node_name == "IP":
                try:
                    pid_gains = params.mds_conn.get_data(
                        node_path + f":P_{wire_index :02d}:pid_gains",
                        tree_name="pcs",
                    )
                    if np.any(pid_gains):
                        signal, sigtime = params.mds_conn.get_data_with_dims(
                            node_path + f":P_{wire_index :02d}", tree_name="pcs"
                        )
                        ip_prog_temp = interp1(
                            sigtime,
                            signal,
                            pcstime,
                            bounds_error=False,
                            fill_value=signal[-1],
                        )
                        end = pcstime[
                            np.argmin(np.abs(pcstime - sigtime[-1]) + 0.0001)
                        ]
                        segment_indices = np.where(
                            (pcstime >= start) & (pcstime <= end)
                        )
                        ip_prog[segment_indices] = ip_prog_temp[segment_indices]
                except mdsExceptions.MdsException:
                    params.logger.warning(
                        "[Shot %s]: Error getting PID gains for wire %s",
                        params.shot_id,
                        wire_index,
                    )
                    params.logger.debug(
                        "[Shot %s]: %s", params.shot_id, traceback.format_exc()
                    )
                break  # Break out of wire_index loop
    ip, magtime = params.mds_conn.get_data_with_dims(
        r"\ip", tree_name="magnetics", astype="float64"
    )
    output = CmodPhysicsMethods._get_ip_parameters(
        params.times, ip, magtime, ip_prog, pcstime
    )
    return output

get_kappa_area staticmethod ¤

get_kappa_area(params: PhysicsMethodParams)

Retrieve and calculate the plasma's ellipticity (kappa, also known as the elongation) using its area and minor radius.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the calculated "kappa_area".

Source code in disruption_py/machine/cmod/physics.py
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
@staticmethod
@physics_method(columns=["kappa_area"], tokamak=Tokamak.CMOD)
def get_kappa_area(params: PhysicsMethodParams):
    """
    Retrieve and calculate the plasma's ellipticity (kappa, also known as
    the elongation) using its area and minor radius.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing the calculated "kappa_area".
    """
    aminor = params.mds_conn.get_data(
        r"\efit_aeqdsk:aminor", tree_name="_efit_tree", astype="float64"
    )
    area = params.mds_conn.get_data(
        r"\efit_aeqdsk:area", tree_name="_efit_tree", astype="float64"
    )
    times = params.mds_conn.get_data(
        r"\efit_aeqdsk:time", tree_name="_efit_tree", astype="float64"
    )

    aminor[aminor <= 0] = 0.001  # make sure aminor is not 0 or less than 0
    # make sure area is not 0 or less than 0
    area[area <= 0] = 3.14 * 0.001**2
    output = CmodPhysicsMethods._get_kappa_area(params.times, aminor, area, times)
    return output

get_n_equal_1_amplitude staticmethod ¤

get_n_equal_1_amplitude(params: PhysicsMethodParams)

Calculate n=1 amplitude and phase.

This method uses the four BP13 Bp sensors near the midplane on the outboard vessel wall. The calculation is done by using a least squares fit to an expansion in terms of n = 0 & 1 toroidal harmonics. The BP13 sensors are part of the set used for plasma control and equilibrium reconstruction, and their signals have been analog integrated (units: tesla), so they don't have to be numerically integrated. These four sensors were working well in 2014, 2015, and 2016. I looked at our locked mode MGI run on 1150605, and the different applied A-coil phasings do indeed show up on the n=1 signal.

N=1 toroidal assymmetry in the magnetic fields

Source code in disruption_py/machine/cmod/physics.py
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
@staticmethod
@physics_method(
    columns=["n_equal_1_mode", "n_equal_1_normalized", "n_equal_1_phase", "bt"],
    tokamak=Tokamak.CMOD,
)
def get_n_equal_1_amplitude(params: PhysicsMethodParams):
    """
    Calculate n=1 amplitude and phase.

    This method uses the four BP13 Bp sensors near the midplane on the outboard
    vessel wall.  The calculation is done by using a least squares fit to an
    expansion in terms of n = 0 & 1 toroidal harmonics.  The BP13 sensors are
    part of the set used for plasma control and equilibrium reconstruction,
    and their signals have been analog integrated (units: tesla), so they
    don't have to be numerically integrated.  These four sensors were working
    well in 2014, 2015, and 2016.  I looked at our locked mode MGI run on
    1150605, and the different applied A-coil phasings do indeed show up on
    the n=1 signal.

    N=1 toroidal assymmetry in the magnetic fields
    """
    # These sensors are placed toroidally around the machine. Letters refer to
    # the 2 ports the sensors were placed between.
    bp13_names = ["BP13_BC", "BP13_DE", "BP13_GH", "BP13_JK"]
    bp13_signals = np.empty((len(params.times), len(bp13_names)))

    path = r"\mag_bp_coils."
    bp_node_names = params.mds_conn.get_data(
        path + "nodename", tree_name="magnetics"
    )
    phi = params.mds_conn.get_data(path + "phi", tree_name="magnetics")
    btor_pickup_coeffs = params.mds_conn.get_data(
        path + "btor_pickup", tree_name="magnetics"
    )
    _, bp13_indices, _ = np.intersect1d(
        bp_node_names, bp13_names, return_indices=True
    )
    bp13_phi = phi[bp13_indices] + 360  # INFO
    bp13_btor_pickup_coeffs = btor_pickup_coeffs[bp13_indices]
    btor, t_mag = params.mds_conn.get_data_with_dims(
        r"\btor", tree_name="magnetics"
    )
    # Toroidal power supply takes time to turn on, from ~ -1.8 and should be
    # on by t=-1. So pick the time before that to calculate baseline
    baseline_indices = np.where(t_mag <= -1.8)
    btor = btor - np.mean(btor[baseline_indices])
    path = r"\mag_bp_coils.signals."
    # For each sensor:
    # 1. Subtract baseline offset
    # 2. Subtract btor pickup
    # 3. Interpolate bp onto shot timebase

    for i, bp13_name in enumerate(bp13_names):
        signal = params.mds_conn.get_data(path + bp13_name, tree_name="magnetics")
        if len(signal) == 1:
            raise CalculationError(f"No data for {bp13_name}")

        baseline = np.mean(signal[baseline_indices])
        signal = signal - baseline
        signal = signal - bp13_btor_pickup_coeffs[i] * btor
        bp13_signals[:, i] = interp1(t_mag, signal, params.times)

    # TODO: Examine edge case behavior of sign
    polarity = np.sign(np.mean(btor))
    btor_magnitude = btor * polarity
    btor_magnitude = interp1(t_mag, btor_magnitude, params.times)
    btor = interp1(t_mag, btor, params.times)  # Interpolate BT with sign

    # Create the 'design' matrix ('A') for the linear system of equations:
    # Bp(phi) = A1 + A2*sin(phi) + A3*cos(phi)
    ncoeffs = 3
    a = np.empty((len(bp13_names), ncoeffs))
    a[:, 0] = np.ones(4)
    a[:, 1] = np.sin(bp13_phi * np.pi / 180.0)
    a[:, 2] = np.cos(bp13_phi * np.pi / 180.0)
    coeffs = np.linalg.pinv(a) @ bp13_signals.T
    # The n=1 amplitude at each time is sqrt(A2^2 + A3^2)
    # The n=1 phase at each time is arctan(-A2/A3), using complex number
    # phasor formalism, exp(i(phi - delta))
    n_equal_1_amplitude = np.sqrt(coeffs[1, :] ** 2 + coeffs[2, :] ** 2)
    # TODO: Confirm arctan2 = atan2
    n_equal_1_phase = np.arctan2(-coeffs[1, :], coeffs[2, :])
    n_equal_1_normalized = n_equal_1_amplitude / btor_magnitude
    # INFO: Debugging purpose block of code at end of matlab file
    # INFO: n_equal_1_amplitude vs n_equal_1_mode
    output = {
        "n_equal_1_mode": n_equal_1_amplitude,
        "n_equal_1_normalized": n_equal_1_normalized,
        "n_equal_1_phase": n_equal_1_phase,
        "bt": btor,
    }
    return output

get_ohmic_parameters staticmethod ¤

get_ohmic_parameters(params: PhysicsMethodParams)

Retrieve and calculate ohmic heating parameters.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the calculated ohmic parameters, including "p_oh" and "v_loop".

Source code in disruption_py/machine/cmod/physics.py
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
@staticmethod
@physics_method(
    columns=["p_oh", "v_loop"],
    tokamak=Tokamak.CMOD,
)
def get_ohmic_parameters(params: PhysicsMethodParams):
    """
    Retrieve and calculate ohmic heating parameters.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing the calculated ohmic parameters, including
        "p_oh" and "v_loop".
    """
    v_loop, v_loop_time = params.mds_conn.get_data_with_dims(
        r"\top.mflux:v0", tree_name="analysis", astype="float64"
    )
    if len(v_loop_time) <= 1:
        raise CalculationError("No data for v_loop_time")

    li, efittime = params.mds_conn.get_data_with_dims(
        r"\efit_aeqdsk:li", tree_name="_efit_tree", astype="float64"
    )  # [dimensionless], [s]
    ip_parameters = CmodPhysicsMethods.get_ip_parameters(params=params)
    r0 = 0.01 * params.mds_conn.get_data(
        r"\efit_aeqdsk:rmagx", tree_name="_efit_tree"
    )  # [cm] -> [m]

    output = CmodPhysicsMethods._get_ohmic_parameters(
        params.times,
        v_loop,
        v_loop_time,
        li,
        efittime,
        ip_parameters["dip_smoothed"],
        ip_parameters["ip"],
        r0,
    )
    return output

get_peaking_factors staticmethod ¤

get_peaking_factors(params: PhysicsMethodParams)

Calculate peaking factors for electron density, electron temperature, and pressure.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing peaking factors for electron density (ne_peaking), temperature (te_peaking), and pressure (pressure_peaking).

Source code in disruption_py/machine/cmod/physics.py
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
@staticmethod
@physics_method(
    columns=["ne_peaking", "te_peaking", "pressure_peaking"],
    tokamak=Tokamak.CMOD,
)
def get_peaking_factors(params: PhysicsMethodParams):
    """
    Calculate peaking factors for electron density, electron temperature, and
    pressure.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing peaking factors for electron density (`ne_peaking`),
        temperature (`te_peaking`), and pressure (`pressure_peaking`).
    """
    use_ts_tci_calibration = False
    # Ignore shots on the blacklist
    if CmodPhysicsMethods.is_on_blacklist(params.shot_id):
        raise CalculationError("Shot is on blacklist")
    # Fetch data
    # Get EFIT geometry data
    z0 = 0.01 * params.mds_conn.get_data(
        r"\efit_aeqdsk:zmagx", tree_name="_efit_tree"
    )
    kappa = params.mds_conn.get_data(r"\efit_aeqdsk:kappa", tree_name="_efit_tree")
    aminor, efit_time = params.mds_conn.get_data_with_dims(
        r"\efit_aeqdsk:aminor", tree_name="_efit_tree"
    )
    bminor = aminor * kappa

    # Get Te data and TS time basis
    node_ext = ".yag_new.results.profiles"
    ts_te_core, ts_time = params.mds_conn.get_data_with_dims(
        f"{node_ext}:te_rz", tree_name="electrons"
    )
    ts_te_core = ts_te_core * 1000  # [keV] -> [eV]
    ts_te_edge = params.mds_conn.get_data(r"\ts_te")
    ts_te = np.concatenate((ts_te_core, ts_te_edge)) * 11600  # [eV] -> [K]

    # Get ne data
    ts_ne_core = params.mds_conn.get_data(
        f"{node_ext}:ne_rz", tree_name="electrons"
    )
    ts_ne_edge = params.mds_conn.get_data(r"\ts_ne")
    ts_ne = np.concatenate((ts_ne_core, ts_ne_edge))

    # Get TS chord positions
    ts_z_core = params.mds_conn.get_data(
        f"{node_ext}:z_sorted", tree_name="electrons"
    )
    ts_z_edge = params.mds_conn.get_data(r"\fiber_z", tree_name="electrons")
    ts_z = np.concatenate((ts_z_core, ts_z_edge))
    # Make sure that there are equal numbers of edge position and edge temperature points
    if len(ts_z_edge) != ts_te_edge.shape[0]:
        raise CalculationError(
            "TS edge data and z positions are not the same length for shot"
        )

    # Calibrate ts_ne using TCI -- slow
    if use_ts_tci_calibration:
        # This shouldn't affect ne_PF (except if calib is not between 0.5 & 1.5)
        # because we're just multiplying ne by a constant
        (nl_ts1, nl_ts2, nl_tci1, nl_tci2, _, _) = (
            CmodThomsonDensityMeasure.compare_ts_tci(params)
        )
        if np.mean(nl_ts1) != 1e32 and np.mean(nl_ts2) != 1e32:
            nl_tci = np.concatenate((nl_tci1, nl_tci2))
            nl_ts = np.concatenate((nl_ts1 + nl_ts2))
            calib = np.mean(nl_tci) / np.mean(nl_ts)
        elif np.mean(nl_ts1) != 1e32 and np.mean(nl_ts2) == 1e32:
            calib = np.mean(nl_tci1) / np.mean(nl_ts1)
        elif np.mean(nl_ts1) == 1e32 and np.mean(nl_ts2) != 1e32:
            calib = np.mean(nl_tci2) / np.mean(nl_ts2)
        else:
            calib = np.nan

        if 0.5 < calib < 1.5:
            ts_ne *= calib
        else:
            raise CalculationError(
                "Density calibration error exceeds acceptable range"
            )

    return CmodPhysicsMethods._get_peaking_factors(
        params.times, ts_time, ts_te, ts_ne, ts_z, efit_time, bminor, z0
    )

get_power staticmethod ¤

get_power(params: PhysicsMethodParams)

NOTE: the timebase for the LH power signal does not extend over the full time span of the discharge. Therefore, when interpolating the LH power signal onto the "timebase" array, the LH signal has to be extrapolated with zero values. This is an option in the 'interp1' routine. If the extrapolation is not done, then the 'interp1' routine will assign NaN (Not-a-Number) values for times outside the LH timebase, and the NaN's will propagate into p_input and rad_fraction, which is not desirable.

Source code in disruption_py/machine/cmod/physics.py
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
@staticmethod
@physics_method(
    columns=["p_rad", "dprad_dt", "p_lh", "p_icrf", "p_input", "radiated_fraction"],
    tokamak=Tokamak.CMOD,
)
def get_power(params: PhysicsMethodParams):
    """
    NOTE: the timebase for the LH power signal does not extend over the full
        time span of the discharge.  Therefore, when interpolating the LH power
        signal onto the "timebase" array, the LH signal has to be extrapolated
        with zero values.  This is an option in the 'interp1' routine.  If the
        extrapolation is not done, then the 'interp1' routine will assign NaN
        (Not-a-Number) values for times outside the LH timebase, and the NaN's
        will propagate into p_input and rad_fraction, which is not desirable.
    """
    values = [
        None
    ] * 6  # List to store the time and values of the LH power, icrf power, and radiated power
    trees = ["LH", "RF", "spectroscopy"]
    nodes = [r"\LH::TOP.RESULTS:NETPOW", r"\rf::rf_power_net", r"\twopi_diode"]
    for i in range(3):
        try:
            sig, sig_time = params.mds_conn.get_data_with_dims(
                nodes[i], tree_name=trees[i], astype="float64"
            )
            values[2 * i] = sig
            values[2 * i + 1] = sig_time
        except (mdsExceptions.TreeFOPENR, mdsExceptions.TreeNNF):
            continue
    p_oh = CmodPhysicsMethods.get_ohmic_parameters(params=params)["p_oh"]
    output = CmodPhysicsMethods._get_power(params.times, *values, p_oh)
    return output

get_prad_peaking staticmethod ¤

get_prad_peaking(params: PhysicsMethodParams)

Calculate the peaking factor for radiated power.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the peaking factor for radiated power (prad_peaking).

Source code in disruption_py/machine/cmod/physics.py
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
@staticmethod
@physics_method(
    columns=["prad_peaking"],
    tokamak=Tokamak.CMOD,
)
def get_prad_peaking(params: PhysicsMethodParams):
    """
    Calculate the peaking factor for radiated power.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing the peaking factor for radiated power (`prad_peaking`).
    """
    prad_peaking = np.full(len(params.times), np.nan)
    nan_output = {"prad_peaking": prad_peaking}
    r0 = 0.01 * params.mds_conn.get_data(
        r"\efit_aeqdsk:rmagx", tree_name="_efit_tree"
    )
    z0 = 0.01 * params.mds_conn.get_data(
        r"\efit_aeqdsk:zmagx", tree_name="_efit_tree"
    )
    aminor, efit_time = params.mds_conn.get_data_with_dims(
        r"\efit_aeqdsk:aminor", tree_name="_efit_tree"
    )
    got_axa = False
    try:
        bright_axa, t_axa, r_axa = params.mds_conn.get_data_with_dims(
            r"\SPECTROSCOPY::TOP.BOLOMETER.RESULTS.DIODE.AXA:BRIGHT",
            tree_name="spectroscopy",
            dim_nums=[1, 0],
        )
        z_axa = params.mds_conn.get_data(
            r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXA:Z_O",
            tree_name="spectroscopy",
        )
        good_axa = params.mds_conn.get_data(
            r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXA:GOOD",
            tree_name="spectroscopy",
        )
        got_axa = True
    except mdsExceptions.MdsException:
        params.logger.debug("[Shot %s]: Failed to get AXA data", params.shot_id)
    got_axj = False
    try:
        bright_axj, t_axj, r_axj = params.mds_conn.get_data_with_dims(
            r"\SPECTROSCOPY::TOP.BOLOMETER.RESULTS.DIODE.AXJ:BRIGHT",
            tree_name="spectroscopy",
            dim_nums=[1, 0],
        )
        z_axj = params.mds_conn.get_data(
            r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXJ:Z_O",
            tree_name="spectroscopy",
        )
        good_axj = params.mds_conn.get_data(
            r"\SPECTROSCOPY::TOP.BOLOMETER.DIODE_CALIB.AXJ:GOOD",
            tree_name="spectroscopy",
        )
        got_axj = True
    except mdsExceptions.MdsException:
        params.logger.debug("[Shot %s]: Failed to get AXJ data", params.shot_id)
    if not (got_axa or got_axj):
        return nan_output
    a_minor = interp1(efit_time, aminor, params.times)
    r0 = interp1(efit_time, r0, params.times)
    z0 = interp1(efit_time, z0, params.times)
    if got_axa:
        good_axa = np.where(good_axa > 0)[0]
        bright_axa = bright_axa[:, good_axa]
        axa_interp = np.full((bright_axa.shape[1], len(params.times)), np.nan)
        r_axa = r_axa[good_axa]
        for i in range(bright_axa.shape[1]):
            interped = interp1(t_axa.T, bright_axa[:, i], params.times.T)
            indx = np.where(interped < 0)
            interped[indx] = np.nan
            axa_interp[i, :] = interped
    if got_axj:
        good_axj = np.where(good_axj > 0)[0]
        bright_axj = bright_axj[:, good_axj]
        axj_interp = np.full((bright_axj.shape[1], len(params.times)), np.nan)
        r_axj = r_axj[good_axj]
        for i in range(bright_axj.shape[1]):
            interped = interp1(t_axj.T, bright_axj[:, i], params.times.T)
            indx = np.where(interped < 0)
            interped[indx] = np.nan
            axj_interp[i, :] = interped
    for i in range(len(params.times)):
        core_radiation = np.array([])
        all_radiation = np.array([])
        if got_axa:
            axa_dist = np.sqrt((r_axa - r0[i]) ** 2 + (z0[i] - z_axa) ** 2)
            axa_core_index = axa_dist < 0.2 * a_minor[i]
            core_radiation = np.append(
                core_radiation, axa_interp[axa_core_index, i]
            )
            all_radiation = np.append(all_radiation, axa_interp[:, i])
        if got_axj:
            axj_dist = np.sqrt((r_axj - r0[i]) ** 2 + (z0[i] - z_axj) ** 2)
            axj_core_index = axj_dist < 0.2 * a_minor[i]
            core_radiation = np.append(
                core_radiation, axj_interp[axj_core_index, i]
            )
            all_radiation = np.append(all_radiation, axj_interp[:, i])
        with warnings.catch_warnings():
            warnings.filterwarnings(action="ignore", message="Mean of empty slice")
            prad_peaking[i] = np.nanmean(core_radiation) / np.nanmean(all_radiation)
    return {"prad_peaking": prad_peaking}

get_sxr_data staticmethod ¤

get_sxr_data(params: PhysicsMethodParams)

Retrieve soft X-ray (SXR) data from array 1 chord 16 for a given shot.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the soft X-ray data (sxr).

Source code in disruption_py/machine/cmod/physics.py
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
@staticmethod
@physics_method(columns=["sxr"], tokamak=Tokamak.CMOD)
def get_sxr_data(params: PhysicsMethodParams):
    """
    Retrieve soft X-ray (SXR) data from array 1 chord 16 for a given shot.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing the soft X-ray data (`sxr`).
    """
    sxr, t_sxr = params.mds_conn.get_data_with_dims(
        r"\top.brightnesses.array_1:chord_16",
        tree_name="xtomo",
        astype="float64",
    )
    sxr = interp1(t_sxr, sxr, params.times)
    return {"sxr": sxr}

get_te_profile_params_ece staticmethod ¤

get_te_profile_params_ece(params: PhysicsMethodParams)

Gets MDSplus data to be used in the calculations of te profile parameters from ECE data

PARAMETER DESCRIPTION
params

The parameters storing the requested time base, shot id, etc

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
Output of get_te_profile_params_ece(), which processes the MDSplus data
Last Major Update: Henry Wietfeldt (8/28/24)
Source code in disruption_py/machine/cmod/physics.py
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
@staticmethod
@physics_method(
    columns=["te_core_vs_avg_ece", "te_edge_vs_avg_ece", "te_width_ece"],
    tokamak=Tokamak.CMOD,
)
def get_te_profile_params_ece(params: PhysicsMethodParams):
    """
    Gets MDSplus data to be used in the calculations of te profile parameters
    from ECE data
    Parameters
    ----------
    params: PhysicsMethodParams
        The parameters storing the requested time base, shot id, etc
    Returns
    ----------
    Output of get_te_profile_params_ece(), which processes the MDSplus data

    Last Major Update: Henry Wietfeldt (8/28/24)
    """

    # Constants
    n_gpc1_channels = 9

    # Get magnetic axis data from EFIT
    r0 = 0.01 * params.mds_conn.get_data(
        r"\efit_aeqdsk:rmagx", tree_name="_efit_tree"
    )  # [cm] -> [m]
    aminor, efit_time = params.mds_conn.get_data_with_dims(
        r"\efit_aeqdsk:aminor", tree_name="_efit_tree"
    )  # [m], [s]

    # Btor and LH Power used for filtering okay time slices
    btor, t_mag = params.mds_conn.get_data_with_dims(
        r"\btor", tree_name="magnetics"
    )
    try:
        lh_power, lh_time = params.mds_conn.get_data_with_dims(
            ".results:netpow", tree_name="lh"
        )  # [kW], [s]
    except mdsExceptions.MdsException:
        # When LH power is off, it's often not stored in tree or it's a single 0.
        lh_power = 0.0
    if not isinstance(lh_power, np.ndarray):
        lh_time = np.copy(efit_time)
        lh_power = np.zeros(len(efit_time))

    # Read in Te profile measurements from 9 GPC1 ("GPC" in MDSplus tree) channels
    node_path = ".ece.gpc_results"
    gpc1_te_data = []
    gpc1_te_time = []
    gpc1_rad_data = []
    gpc1_rad_time = []
    for i in range(n_gpc1_channels):
        try:
            te_data, te_time = params.mds_conn.get_data_with_dims(
                node_path + ".te:te" + str(i + 1), tree_name="electrons"
            )  # [keV], [s]
            rad_data, rad_time = params.mds_conn.get_data_with_dims(
                node_path + ".rad:r" + str(i + 1), tree_name="electrons"
            )  # [m], [s]
            # For C-Mod shot 1120522025 (and maybe others), rad_time is strings.
            # Don't use channel in that case
            if np.issubdtype(rad_time.dtype, np.floating):
                gpc1_te_data.append(te_data)
                gpc1_te_time.append(te_time)
                gpc1_rad_data.append(rad_data)
                gpc1_rad_time.append(rad_time)
        except mdsExceptions.MdsException:
            continue
    gpc1_te_data = np.array(gpc1_te_data)
    gpc1_te_time = np.array(gpc1_te_time)
    gpc1_rad_data = np.array(gpc1_rad_data)
    gpc1_rad_time = np.array(gpc1_rad_time)

    # Read in Te profile measurements from GPC2 (19 channels)
    node_path = ".gpc_2.results"
    gpc2_te_data, gpc2_te_time = params.mds_conn.get_data_with_dims(
        node_path + ":gpc2_te", tree_name="electrons"
    )  # [keV], [s]
    gpc2_rad_data, gpc2_rad_time = params.mds_conn.get_data_with_dims(
        node_path + ":radii", tree_name="electrons"
    )  # [m], [s]

    return CmodPhysicsMethods._get_te_profile_params_ece(
        params.times,
        gpc1_te_data,
        gpc1_te_time,
        gpc1_rad_data,
        gpc1_rad_time,
        gpc2_te_data,
        gpc2_te_time,
        gpc2_rad_data,
        gpc2_rad_time,
        efit_time,
        r0,
        aminor,
        btor,
        t_mag,
        lh_power,
        lh_time,
    )

get_time_until_disrupt staticmethod ¤

get_time_until_disrupt(params: PhysicsMethodParams)

Calculate the time until disruption.

PARAMETER DESCRIPTION
params

The parameters containing the disruption information and times.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary with a single key "time_until_disrupt" containing a list of time until disruption.

Source code in disruption_py/machine/cmod/physics.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
@staticmethod
@physics_method(columns=["time_until_disrupt"], tokamak=Tokamak.CMOD)
def get_time_until_disrupt(params: PhysicsMethodParams):
    """
    Calculate the time until disruption.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the disruption information and times.

    Returns
    -------
    dict
        A dictionary with a single key "time_until_disrupt" containing a list
        of time until disruption.
    """
    time_until_disrupt = [np.nan]
    if params.disrupted:
        time_until_disrupt = params.disruption_time - params.times
    return {"time_until_disrupt": time_until_disrupt}

get_ts_parameters staticmethod ¤

get_ts_parameters(params: PhysicsMethodParams)

Retrieve Thomson scattering temperature width parameters.

PARAMETER DESCRIPTION
params

Parameters containing MDS connection and shot information.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the temperature width (te_width).

Source code in disruption_py/machine/cmod/physics.py
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
@staticmethod
@physics_method(columns=["te_width"], tokamak=Tokamak.CMOD)
def get_ts_parameters(params: PhysicsMethodParams):
    """
    Retrieve Thomson scattering temperature width parameters.

    Parameters
    ----------
    params : PhysicsMethodParams
        Parameters containing MDS connection and shot information.

    Returns
    -------
    dict
        A dictionary containing the temperature width (`te_width`).
    """
    # TODO: Gaussian vs parabolic fit for te profile

    # Read in Thomson core temperature data, which is a 2-D array, with the
    # dependent dimensions being time and z (vertical coordinate)
    node_path = ".yag_new.results.profiles"

    ts_data, ts_time = params.mds_conn.get_data_with_dims(
        node_path + ":te_rz", tree_name="electrons"
    )
    ts_z = params.mds_conn.get_data(node_path + ":z_sorted", tree_name="electrons")

    output = CmodPhysicsMethods._get_ts_parameters(
        params.times, ts_data, ts_time, ts_z
    )
    return output

get_z_parameters staticmethod ¤

get_z_parameters(params: PhysicsMethodParams)

Retrieve and interpolate plasma's vertical position parameters.

PARAMETER DESCRIPTION
params

The parameters containing the MDSplus connection, shot id and more.

TYPE: PhysicsMethodParams

RETURNS DESCRIPTION
dict

A dictionary containing the vertical position parameters, including "z_error", "z_prog", "zcur", "v_z", and "z_times_v_z".

Source code in disruption_py/machine/cmod/physics.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
@staticmethod
@physics_method(
    columns=["z_error", "z_prog", "zcur", "v_z", "z_times_v_z"],
    tokamak=Tokamak.CMOD,
)
def get_z_parameters(params: PhysicsMethodParams):
    """
    Retrieve and interpolate plasma's vertical position parameters.

    Parameters
    ----------
    params : PhysicsMethodParams
        The parameters containing the MDSplus connection, shot id and more.

    Returns
    -------
    dict
        A dictionary containing the vertical position parameters, including "z_error", "z_prog",
        "zcur", "v_z", and "z_times_v_z".
    """
    pcstime = np.array(np.arange(-4, 12.383, 0.001))
    z_prog = np.empty(pcstime.shape)
    z_prog.fill(np.nan)
    z_prog_temp = z_prog.copy()
    z_wire_index = -1
    active_wire_segments = CmodPhysicsMethods._get_active_wire_segments(
        params=params
    )

    for node_path, start in active_wire_segments:
        for wire_index in range(1, 17):
            wire_node_name = params.mds_conn.get_data(
                node_path + f":P_{wire_index :02d}:name", tree_name="pcs"
            )
            if wire_node_name == "ZCUR":
                try:
                    pid_gains = params.mds_conn.get_data(
                        node_path + f":P_{wire_index :02d}:pid_gains",
                        tree_name="pcs",
                    )
                    if np.any(pid_gains):
                        signal, sigtime = params.mds_conn.get_data_with_dims(
                            node_path + f":P_{wire_index :02d}", tree_name="pcs"
                        )
                        end = sigtime[
                            np.argmin(np.abs(sigtime - pcstime[-1]) + 0.0001)
                        ]
                        z_prog_temp = interp1(
                            sigtime,
                            signal,
                            pcstime,
                            "linear",
                            False,
                            fill_value=signal[-1],
                        )
                        z_wire_index = wire_index
                        segment_indices = [
                            np.where((pcstime >= start) & (pcstime <= end))
                        ]
                        z_prog[segment_indices] = z_prog_temp[segment_indices]
                        break
                except mdsExceptions.MdsException:
                    params.logger.debug(
                        "[Shot %s]: %s", params.shot_id, traceback.format_exc()
                    )
                    continue  # TODO: Consider raising appropriate error
            else:
                continue
            break
    if z_wire_index == -1:
        raise CalculationError("Data source error: No ZCUR wire was found")
    # Read in A_OUT, which is a 16xN matrix of the errors for *all* 16 wires for
    # *all* of the segments. Note that DPCS time is usually taken at 10kHz.
    wire_errors, dpcstime = params.mds_conn.get_data_with_dims(
        r"\top.hardware.dpcs.signals:a_out", tree_name="hybrid", dim_nums=[1]
    )
    # The value of Z_error we read is not in the units we want. It must be *divided*
    #  by a factor AND *divided* by the plasma current.
    z_error_without_factor_and_ip = wire_errors[:, z_wire_index]
    z_error_without_ip = np.empty(z_error_without_factor_and_ip.shape)
    z_error_without_ip.fill(np.nan)
    # Also, it turns out that different segments have different factors. So we
    # search through the active segments (determined above), find the factors,
    # and *divide* by the factor only for the times in the active segment (as
    # determined from start_times and stop_times.
    for i, (_, start) in enumerate(active_wire_segments):
        if i == len(active_wire_segments) - 1:
            end = pcstime[-1]
        else:
            end = active_wire_segments[i + 1][1]
        z_factor = params.mds_conn.get_data(
            rf"\dpcs::top.seg_{i+1:02d}:p_{z_wire_index:02d}:predictor:factor",
            tree_name="hybrid",
        )
        temp_indx = np.where((dpcstime >= start) & (dpcstime <= end))
        z_error_without_ip[temp_indx] = (
            z_error_without_factor_and_ip[temp_indx] / z_factor
        )  # [A*m]
    # Next we grab ip, which comes from a_in:input_056. This also requires
    # *multiplication* by a factor.
    # NOTE that I can't get the following ip_without_factor to work for shots
    # before 2015.
    # TODO: Try to fix this
    if params.shot_id > 1150101000:
        ip_without_factor = params.mds_conn.get_data(
            r"\hybrid::top.hardware.dpcs.signals.a_in:input_056", tree_name="hybrid"
        )
        ip_factor = params.mds_conn.get_data(
            r"\hybrid::top.dpcs_config.inputs:input_056:p_to_v_expr",
            tree_name="hybrid",
        )
        ip = ip_without_factor * ip_factor  # [A]
    else:
        ip, ip_time = params.mds_conn.get_data_with_dims(
            r"\ip", tree_name="magnetics"
        )
        ip = interp1(ip_time, ip, dpcstime)
    return CmodPhysicsMethods._get_z_parameters(
        params.times, z_prog, pcstime, z_error_without_ip, ip, dpcstime
    )

is_on_blacklist staticmethod ¤

is_on_blacklist(shot_id: int) -> bool

TODO why will these shots cause _get_peaking_factors, _get_peaking_factors_no_tci, and _get_edge_parameters to fail?

Source code in disruption_py/machine/cmod/physics.py
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
@staticmethod
def is_on_blacklist(shot_id: int) -> bool:
    """
    TODO why will these shots cause `_get_peaking_factors`,
    `_get_peaking_factors_no_tci`, and `_get_edge_parameters` to fail?
    """
    if (
        1120000000 < shot_id < 1120213000
        or 1140000000 < shot_id < 1140227000
        or 1150000000 < shot_id < 1150610000
        or 1160000000 < shot_id < 1160303000
    ):
        return True
    return False